Deconstructing squeezed light: Schmidt decomposition versus the Whittaker-Shannon interpolation

IF 2.9 2区 物理与天体物理 Q2 Physics and Astronomy
C. Drago, J. E. Sipe
{"title":"Deconstructing squeezed light: Schmidt decomposition versus the Whittaker-Shannon interpolation","authors":"C. Drago, J. E. Sipe","doi":"10.1103/physreva.110.023710","DOIUrl":null,"url":null,"abstract":"We develop a formalism to describe squeezed light with large spectral-temporal correlations. This description is valid in all regimes, but is especially applicable in the long pulse to continuous-wave limit where the photon density at any particular time is small, although the total number of photons can be quite large. Our method relies on the Whittaker-Shannon interpolation formula applied to the joint temporal amplitude of squeezed light, which allows us to “deconstruct” the squeezed state. This provides a local description of the state and its photon statistics, making the underlying physics more transparent than does the use of the Schmidt decomposition. The formalism can easily be extended to more exotic nonclassical states where a Schmidt decomposition is not possible.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.023710","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a formalism to describe squeezed light with large spectral-temporal correlations. This description is valid in all regimes, but is especially applicable in the long pulse to continuous-wave limit where the photon density at any particular time is small, although the total number of photons can be quite large. Our method relies on the Whittaker-Shannon interpolation formula applied to the joint temporal amplitude of squeezed light, which allows us to “deconstruct” the squeezed state. This provides a local description of the state and its photon statistics, making the underlying physics more transparent than does the use of the Schmidt decomposition. The formalism can easily be extended to more exotic nonclassical states where a Schmidt decomposition is not possible.

Abstract Image

解构挤压光:施密特分解法与惠特克-香农插值法的比较
我们建立了一种形式主义来描述具有大光谱-时间相关性的挤压光。这种描述在所有情况下都有效,但尤其适用于长脉冲到连续波的极限,在这种情况下,虽然光子总数可能相当大,但任何特定时间的光子密度都很小。我们的方法依赖于惠特克-香农插值公式,该公式适用于挤压光的联合时间振幅,使我们能够 "解构 "挤压态。这提供了对状态及其光子统计量的局部描述,使底层物理比使用施密特分解更加透明。这种形式主义可以很容易地扩展到施密特分解无法实现的更奇特的非经典状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review A
Physical Review A 物理-光学
CiteScore
5.40
自引率
24.10%
发文量
0
审稿时长
2.2 months
期刊介绍: Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts. PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including: -Fundamental concepts -Quantum information -Atomic and molecular structure and dynamics; high-precision measurement -Atomic and molecular collisions and interactions -Atomic and molecular processes in external fields, including interactions with strong fields and short pulses -Matter waves and collective properties of cold atoms and molecules -Quantum optics, physics of lasers, nonlinear optics, and classical optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信