{"title":"Analysis of the impact of electromagnetic fields on UAV flight control systems in EHV–UHV DC overhead transmission lines","authors":"Jie Li, Lingkai Kong, Minghao Chu","doi":"10.1063/5.0225258","DOIUrl":null,"url":null,"abstract":"The impact of operating voltage on Unmanned Aerial Vehicle (UAV) inspection and control is mainly manifested as electromagnetic interference, where the electric field mainly affects the distribution of space charges and ions, exhibiting adsorption effects on UAVs, and the magnetic field interferes with airborne magnetometers, disrupting the navigation system of UAVs. Under power frequency conditions, the electromagnetic field of alternating current exhibits alternating characteristics, and it only polarizes near the wire to form space charges or ion currents, with little effect at further distances. However, the variation in the magnetic field in one cycle is zero (positively correlated with alternating current), so its impact on UAVs is not particularly significant. Under direct current conditions, a constant current is introduced into the wire, and the electric field polarized around the wire generates a constant property of charge or ion current, resulting in a relatively larger electric field strength and a wider range of influence. At the same time, the constant current generates a constant magnetic field, which is applied to the airborne magnetometer, equivalent to adding a constant interference source, thus having a significant impact on the inspection and control of UAVs. This article uses ANSYS software to conduct electromagnetic field simulation analysis on DC transmission lines of different voltage levels.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0225258","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of operating voltage on Unmanned Aerial Vehicle (UAV) inspection and control is mainly manifested as electromagnetic interference, where the electric field mainly affects the distribution of space charges and ions, exhibiting adsorption effects on UAVs, and the magnetic field interferes with airborne magnetometers, disrupting the navigation system of UAVs. Under power frequency conditions, the electromagnetic field of alternating current exhibits alternating characteristics, and it only polarizes near the wire to form space charges or ion currents, with little effect at further distances. However, the variation in the magnetic field in one cycle is zero (positively correlated with alternating current), so its impact on UAVs is not particularly significant. Under direct current conditions, a constant current is introduced into the wire, and the electric field polarized around the wire generates a constant property of charge or ion current, resulting in a relatively larger electric field strength and a wider range of influence. At the same time, the constant current generates a constant magnetic field, which is applied to the airborne magnetometer, equivalent to adding a constant interference source, thus having a significant impact on the inspection and control of UAVs. This article uses ANSYS software to conduct electromagnetic field simulation analysis on DC transmission lines of different voltage levels.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.