Ahmed M. Gemeay, Yusra A. Tashkandy, M. E. Bakr, Anoop Kumar, Md. Moyazzem Hossain, Ehab M. Almetwally
{"title":"Fitting COVID-19 datasets to a new statistical model","authors":"Ahmed M. Gemeay, Yusra A. Tashkandy, M. E. Bakr, Anoop Kumar, Md. Moyazzem Hossain, Ehab M. Almetwally","doi":"10.1063/5.0214473","DOIUrl":null,"url":null,"abstract":"This paper discussed gull alpha power Weibull distribution with a three-parameter. Different statistical inference methods of Gull Alpha Power Weibull distribution parameters have been obtained, estimated, and evaluated. Then, the results are compared to find a suitable model. The unknown parameters of the published Gull Alpha Power Weibull distribution are analyzed. Seven estimation methods are maximum likelihood, Anderson–Darling, right-tail Anderson–Darling, Cramér–von Mises, ordinary least-squares, weighted least-squares, and maximum product of spacing. In addition, the performance of this distribution is computed using the Monte Carlo method, and the limited sample features of parameter estimates for the proposed distribution are analyzed. In light of the importance of heavy-tailed distributions, actuarial approaches are employed. Applying actuarial criteria such as value at risk and tail value at risk to the suggested distribution shows that the model under study has a larger tail than the Weibull distribution. Two real-world COVID-19 infection datasets are used to evaluate the distribution. We analyze the existence and uniqueness of the log-probability roots to establish that they represent the global maximum. We conclude by summarizing the outcomes reported in this study.","PeriodicalId":7619,"journal":{"name":"AIP Advances","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIP Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0214473","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper discussed gull alpha power Weibull distribution with a three-parameter. Different statistical inference methods of Gull Alpha Power Weibull distribution parameters have been obtained, estimated, and evaluated. Then, the results are compared to find a suitable model. The unknown parameters of the published Gull Alpha Power Weibull distribution are analyzed. Seven estimation methods are maximum likelihood, Anderson–Darling, right-tail Anderson–Darling, Cramér–von Mises, ordinary least-squares, weighted least-squares, and maximum product of spacing. In addition, the performance of this distribution is computed using the Monte Carlo method, and the limited sample features of parameter estimates for the proposed distribution are analyzed. In light of the importance of heavy-tailed distributions, actuarial approaches are employed. Applying actuarial criteria such as value at risk and tail value at risk to the suggested distribution shows that the model under study has a larger tail than the Weibull distribution. Two real-world COVID-19 infection datasets are used to evaluate the distribution. We analyze the existence and uniqueness of the log-probability roots to establish that they represent the global maximum. We conclude by summarizing the outcomes reported in this study.
期刊介绍:
AIP Advances is an open access journal publishing in all areas of physical sciences—applied, theoretical, and experimental. All published articles are freely available to read, download, and share. The journal prides itself on the belief that all good science is important and relevant. Our inclusive scope and publication standards make it an essential outlet for scientists in the physical sciences.
AIP Advances is a community-based journal, with a fast production cycle. The quick publication process and open-access model allows us to quickly distribute new scientific concepts. Our Editors, assisted by peer review, determine whether a manuscript is technically correct and original. After publication, the readership evaluates whether a manuscript is timely, relevant, or significant.