Mohamed Mouhib , Rodica Chiriac , François Toche , Jean-Jacques Counioux , Joseph Saab , Mohammed Kaddami , Christelle Goutaudier
{"title":"Liquid and crystallized phases stability in the sub-system H3PO4H4P2O7: Experimental determination and modeling","authors":"Mohamed Mouhib , Rodica Chiriac , François Toche , Jean-Jacques Counioux , Joseph Saab , Mohammed Kaddami , Christelle Goutaudier","doi":"10.1016/j.tca.2024.179837","DOIUrl":null,"url":null,"abstract":"<div><p>The study of the system formed by ortho- and pyrophosphoric acid was resumed in order to understand the crystallization conditions of these two compounds and to highlight the existence of their possible polymorphism. To this end, the solid-liquid equilibria (SLE) of pyrophosphoric acid was studied in depth. Contradictions in literature data were resolved through systematic experimentation: solubility measurements, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Calorimetric measurements confirmed the existence of two crystalline forms of pyrophosphoric acid, and their stability domains were determined. Furthermore, thermodynamic modeling of the SLE has led to a consistent and refined representation of the observed phenomena. In particular, the transition temperature from low-temperature (form I) to high-temperature form (form II) of pyrophosphoric acid was determined at 298.4 K and the coordinates of the eutectic point common between H<sub>3</sub>PO<sub>4</sub> and H<sub>4</sub>P<sub>2</sub>O<sub>7</sub> (I) were precisely determined. Modeling also confirms the non-negligible quantity of triphosphoric acid in the liquid state throughout virtually the entire compositional range. Finally, X-ray powder diffraction data were used to determine the cell parameters and space group of pyrophosphoric acid using EXPO 2014 software.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004060312400176X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The study of the system formed by ortho- and pyrophosphoric acid was resumed in order to understand the crystallization conditions of these two compounds and to highlight the existence of their possible polymorphism. To this end, the solid-liquid equilibria (SLE) of pyrophosphoric acid was studied in depth. Contradictions in literature data were resolved through systematic experimentation: solubility measurements, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Calorimetric measurements confirmed the existence of two crystalline forms of pyrophosphoric acid, and their stability domains were determined. Furthermore, thermodynamic modeling of the SLE has led to a consistent and refined representation of the observed phenomena. In particular, the transition temperature from low-temperature (form I) to high-temperature form (form II) of pyrophosphoric acid was determined at 298.4 K and the coordinates of the eutectic point common between H3PO4 and H4P2O7 (I) were precisely determined. Modeling also confirms the non-negligible quantity of triphosphoric acid in the liquid state throughout virtually the entire compositional range. Finally, X-ray powder diffraction data were used to determine the cell parameters and space group of pyrophosphoric acid using EXPO 2014 software.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes