Binary segmentation of relief patterns on point clouds

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Gabriele Paolini , Claudio Tortorici , Stefano Berretti
{"title":"Binary segmentation of relief patterns on point clouds","authors":"Gabriele Paolini ,&nbsp;Claudio Tortorici ,&nbsp;Stefano Berretti","doi":"10.1016/j.cag.2024.104020","DOIUrl":null,"url":null,"abstract":"<div><p>Analysis of 3D textures, also known as relief patterns is a challenging task that requires separating repetitive surface patterns from the underlying global geometry. Existing works classify entire surfaces based on one or a few patterns by extracting ad-hoc statistical properties. Unfortunately, these methods are not suitable for objects with multiple geometric textures and perform poorly on more complex shapes. In this paper, we propose a neural network for binary segmentation to infer per-point labels based on the presence of surface relief patterns. We evaluated the proposed architecture on a high resolution point cloud dataset, surpassing the state-of-the-art, while maintaining memory and computation efficiency.</p></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"123 ","pages":"Article 104020"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0097849324001559/pdfft?md5=2a3d2170481b5dae4c7f729baa4b2914&pid=1-s2.0-S0097849324001559-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324001559","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Analysis of 3D textures, also known as relief patterns is a challenging task that requires separating repetitive surface patterns from the underlying global geometry. Existing works classify entire surfaces based on one or a few patterns by extracting ad-hoc statistical properties. Unfortunately, these methods are not suitable for objects with multiple geometric textures and perform poorly on more complex shapes. In this paper, we propose a neural network for binary segmentation to infer per-point labels based on the presence of surface relief patterns. We evaluated the proposed architecture on a high resolution point cloud dataset, surpassing the state-of-the-art, while maintaining memory and computation efficiency.

Abstract Image

点云浮雕图案的二进制分割
分析三维纹理(也称浮雕图案)是一项具有挑战性的任务,需要将重复的表面图案与底层的全局几何图形分离开来。现有研究通过提取临时统计属性,根据一种或几种图案对整个表面进行分类。遗憾的是,这些方法不适用于具有多种几何纹理的物体,而且在处理更复杂的形状时表现不佳。在本文中,我们提出了一种用于二元分割的神经网络,可根据表面浮雕图案的存在推断每点标签。我们在高分辨率点云数据集上对所提出的架构进行了评估,结果超过了最先进的架构,同时保持了内存和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信