{"title":"An Open-Circuit Fault Diagnosis for Three-Phase PWM Rectifier Without Grid Voltage Sensor Based on Phase Angle Partition","authors":"Chunjie Li;Jianing Hu;Mingwei Zhao;Wei Zeng","doi":"10.1109/TCSI.2024.3434683","DOIUrl":null,"url":null,"abstract":"In order to accurately locate the open-circuit fault of power tube for three-phase PWM rectifier under the grid-voltage sensorless control strategy, an open-circuit fault diagnosis algorithm based on phase angle partitions of the current and voltage is proposed. To improve dynamic response for the system, predictive current control is implemented. The real-time change rate of the grid-current phase angle is utilized to determine whether a fault occurs. Based on the zero value platform in the grid-side distortion current generated by open-circuit faults, the corresponding phase angles for the grid current and the grid voltage are partitioned to locate the fault tubes. In a grid voltage sensorless control system, the grid voltage information obtained by the voltage observer and phase-locked loop can be susceptible to distortion or interference. To enhance the accuracy of phase-locked angle, a double generalized second-order integrator is used. The proposed open-circuit fault detection method can realize rapid diagnosis and location for single and double power tubes under grid-voltage sensorless predictive current control. Finally, experimental results are presented to verify the feasibility of the diagnosis method.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10623173/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In order to accurately locate the open-circuit fault of power tube for three-phase PWM rectifier under the grid-voltage sensorless control strategy, an open-circuit fault diagnosis algorithm based on phase angle partitions of the current and voltage is proposed. To improve dynamic response for the system, predictive current control is implemented. The real-time change rate of the grid-current phase angle is utilized to determine whether a fault occurs. Based on the zero value platform in the grid-side distortion current generated by open-circuit faults, the corresponding phase angles for the grid current and the grid voltage are partitioned to locate the fault tubes. In a grid voltage sensorless control system, the grid voltage information obtained by the voltage observer and phase-locked loop can be susceptible to distortion or interference. To enhance the accuracy of phase-locked angle, a double generalized second-order integrator is used. The proposed open-circuit fault detection method can realize rapid diagnosis and location for single and double power tubes under grid-voltage sensorless predictive current control. Finally, experimental results are presented to verify the feasibility of the diagnosis method.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.