Dynamic analysis of a cable model subjected to both vortex-induced excitation and axial support motion

IF 1.9 3区 工程技术 Q3 MECHANICS
Yunyue Cong, Houjun Kang, Tieding Guo, Xiaoyang Su
{"title":"Dynamic analysis of a cable model subjected to both vortex-induced excitation and axial support motion","authors":"Yunyue Cong, Houjun Kang, Tieding Guo, Xiaoyang Su","doi":"10.1007/s11012-024-01861-8","DOIUrl":null,"url":null,"abstract":"<p>Large amplitude vibration of transmission line seriously affects the structural safety. Due to the low bending stiffness of superhigh transmission tower, vortex-induced excitation combining with support motion induced by the tower will cause significant complex dynamic behaviors of the transmission line. To reveal dynamic behaviors, this paper newly proposes a suspended cable model of the transmission line subjected to the boundary motion and vortex-induced vibration. Dynamic mechanism and vibration energy transfer are focused in the condition of primary and subharmonic resonances. Innovative behaviors of the transmission line under two excitations are revealed. Firstly, vortex-induced excitation is very weak and support motion usually plays a dominate role in the dynamic responses. Large amplitude vibration of transmission line observed in practice should be caused more by tower tip motion and the vortex-induced vibration is the incentive. Secondly, different weak support motion can cause different effect on dynamic responses of transmission line under vortex-induced vibration reflecting by different lock-in phenomenon, which leads us the application of active control measure in engineering.</p>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"35 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11012-024-01861-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Large amplitude vibration of transmission line seriously affects the structural safety. Due to the low bending stiffness of superhigh transmission tower, vortex-induced excitation combining with support motion induced by the tower will cause significant complex dynamic behaviors of the transmission line. To reveal dynamic behaviors, this paper newly proposes a suspended cable model of the transmission line subjected to the boundary motion and vortex-induced vibration. Dynamic mechanism and vibration energy transfer are focused in the condition of primary and subharmonic resonances. Innovative behaviors of the transmission line under two excitations are revealed. Firstly, vortex-induced excitation is very weak and support motion usually plays a dominate role in the dynamic responses. Large amplitude vibration of transmission line observed in practice should be caused more by tower tip motion and the vortex-induced vibration is the incentive. Secondly, different weak support motion can cause different effect on dynamic responses of transmission line under vortex-induced vibration reflecting by different lock-in phenomenon, which leads us the application of active control measure in engineering.

Abstract Image

对同时受到涡流激励和轴向支撑运动影响的电缆模型进行动态分析
输电线路的大振幅振动严重影响结构安全。由于超高输电铁塔的弯曲刚度较低,涡流引起的激振与铁塔引起的支撑运动相结合,将导致输电线路出现明显的复杂动态行为。为了揭示输电线路的动态行为,本文新提出了一个受边界运动和涡流诱导振动影响的输电线路悬索模型。重点研究了主谐振和次谐振条件下的动力机制和振动能量传递。揭示了输电线在两种激励下的创新行为。首先,涡流引起的激励非常微弱,支撑运动通常在动态响应中起主导作用。实际观察到的输电线路大振幅振动应更多地由塔尖运动引起,而涡流诱导振动则是诱因。其次,不同的微弱支撑运动会对输电线路在涡激振动下的动态响应产生不同的影响,反映出不同的锁定现象,这就促使我们在工程中应用主动控制措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信