{"title":"A Protocol for Electron Probe Microanalysis (EPMA) of Monazite for Chemical Th-U-Pb Age Dating","authors":"Bernhard Schulz, Joachim Krause, Wolfgang Dörr","doi":"10.3390/min14080817","DOIUrl":null,"url":null,"abstract":"A protocol for the monazite (LREE,Y,Th,U,Si,Ca)PO4 in situ Th-U-Pb dating by electron probe microanalyser (EPMA) involves a suitable reference monazite. Ages of several potential reference monazites were determined by TIMS-U-Pb isotope analysis. The EPMA protocol is based on calibration with REE-orthophosphates and a homogeneous Th-rich reference monazite at beam conditions of 20 kV, 50 nA, and 5 µm for best possible matrix matches and avoidance of dead time bias. EPMA measurement of samples and repeated analysis of the reference monazite are performed at beam conditions of 20 kV, 100 nA, and 5 µm. Analysis of Pb and U on a PETL crystal requires YLg-on-PbMa and ThMz-on-UMb interference corrections. Offline re-calibration of the Th calibration on the Th-rich reference monazite, to match its nominal age, is an essential part of the protocol. EPMA-Th-U-Pb data are checked in ThO2*-PbO coordinates for matching isochrones along regressions forced through zero. Error calculations of monazite age populations are performed by weighted average routines. Depending on the number of analyses and spread in ThO2*-PbO coordinates, minimum errors <10 Ma are possible and realistic for Paleozoic monazite ages. A test of the protocol was performed on two garnet metapelite samples from the Paleozoic metamorphic Zone of Erbendorf-Vohenstrauß (NE-Bavaria, western Bohemian Massif).","PeriodicalId":18601,"journal":{"name":"Minerals","volume":"9 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14080817","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A protocol for the monazite (LREE,Y,Th,U,Si,Ca)PO4 in situ Th-U-Pb dating by electron probe microanalyser (EPMA) involves a suitable reference monazite. Ages of several potential reference monazites were determined by TIMS-U-Pb isotope analysis. The EPMA protocol is based on calibration with REE-orthophosphates and a homogeneous Th-rich reference monazite at beam conditions of 20 kV, 50 nA, and 5 µm for best possible matrix matches and avoidance of dead time bias. EPMA measurement of samples and repeated analysis of the reference monazite are performed at beam conditions of 20 kV, 100 nA, and 5 µm. Analysis of Pb and U on a PETL crystal requires YLg-on-PbMa and ThMz-on-UMb interference corrections. Offline re-calibration of the Th calibration on the Th-rich reference monazite, to match its nominal age, is an essential part of the protocol. EPMA-Th-U-Pb data are checked in ThO2*-PbO coordinates for matching isochrones along regressions forced through zero. Error calculations of monazite age populations are performed by weighted average routines. Depending on the number of analyses and spread in ThO2*-PbO coordinates, minimum errors <10 Ma are possible and realistic for Paleozoic monazite ages. A test of the protocol was performed on two garnet metapelite samples from the Paleozoic metamorphic Zone of Erbendorf-Vohenstrauß (NE-Bavaria, western Bohemian Massif).
期刊介绍:
Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.