{"title":"Ellipsephic harmonic series revisited","authors":"J.-P. Allouche, Y. Hu, C. Morin","doi":"10.1007/s10474-024-01448-5","DOIUrl":null,"url":null,"abstract":"<div><p>Ellipsephic or Kempner-like harmonic series are series of inverses of integers whose expansion in base <i>B</i>, for some <span>\\(B \\geq 2\\)</span>, contains no occurrence of some fixed digit or some fixed block of digits. A prototypical example was proposed by Kempner in 1914, namely the sum inverses of integers whose expansion in base 10 contains no occurrence of a nonzero given digit. Results about such series address their convergence as well as closed expressions for their sums (or approximations thereof). \nAnother direction of research is the study of sums of inverses of integers that contain only a given finite number, say <i>k</i>, of some digit or some block of digits, and the limits of such sums when <i>k</i> goes to infinity. \nGeneralizing partial results in the literature, we give a complete result for any digit or block of digits in any base. \n</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"173 2","pages":"461 - 470"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-024-01448-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ellipsephic or Kempner-like harmonic series are series of inverses of integers whose expansion in base B, for some \(B \geq 2\), contains no occurrence of some fixed digit or some fixed block of digits. A prototypical example was proposed by Kempner in 1914, namely the sum inverses of integers whose expansion in base 10 contains no occurrence of a nonzero given digit. Results about such series address their convergence as well as closed expressions for their sums (or approximations thereof).
Another direction of research is the study of sums of inverses of integers that contain only a given finite number, say k, of some digit or some block of digits, and the limits of such sums when k goes to infinity.
Generalizing partial results in the literature, we give a complete result for any digit or block of digits in any base.
期刊介绍:
Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.