Maryam Moosavifar, Sara Akbari, Maryam Nejat Dehkordi
{"title":"Optimizing Photocatalytic Efficiency and Durability of Zeolite-Based Catalysts via Cation Doping for Effective Dye Contaminant Removal","authors":"Maryam Moosavifar, Sara Akbari, Maryam Nejat Dehkordi","doi":"10.1007/s10904-024-03311-0","DOIUrl":null,"url":null,"abstract":"<div><p>Ce and Fe decorated on dealuminated zeolite Y (CFDDAZY) framework were prepared using isomorphous substitution method using dealumination treatment and impregnation methods to the formation of Si–O-Ce and Si–O-Fe bonds. For this purpose, we selected three distinct ratios of metals/zeolite, being 1:3, 1:10, and 1:20. An important outcome was achieved with a 1:20 ratio of metals to zeolite, providing strong evidence for the superiority of this configuration. The catalyst was characterized using XRD, FT-IR, UV–Vis, FESEM, TEM, EDX, and BET techniques. The prepared catalyst was evaluated in the degradation of 4-nitrophenol. To optimize the process, we conducted the effect of various parameters, including reaction time, catalyst amount, temperature, pH, isoelectric point, and 4-NP concentration on the photodegradation process. The optimal conditions for the removal of 4-NP were obtained in the presence of DAZY decorated with Fe and Ce under ultraviolet radiation, 40 µL of hydrogen peroxide, 0.03 g of photocatalyst, and a concentration of 5 × 10<sup>–4</sup> M 4-nitrophenol during 90 min. The mineralization of 4-nitrophenol (4-NP) was verified through COD experiments, resulting in a removal efficiency of 72.80%. Studying Hinshelwood’s equations revealed that the reaction rate was pseudo-first-order. The catalyst can be reused up to five times while maintaining its catalytic activity. Furthermore, the proposed degradation mechanism is introduced.</p></div>","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":"35 1","pages":"538 - 551"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10904-024-03311-0","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Ce and Fe decorated on dealuminated zeolite Y (CFDDAZY) framework were prepared using isomorphous substitution method using dealumination treatment and impregnation methods to the formation of Si–O-Ce and Si–O-Fe bonds. For this purpose, we selected three distinct ratios of metals/zeolite, being 1:3, 1:10, and 1:20. An important outcome was achieved with a 1:20 ratio of metals to zeolite, providing strong evidence for the superiority of this configuration. The catalyst was characterized using XRD, FT-IR, UV–Vis, FESEM, TEM, EDX, and BET techniques. The prepared catalyst was evaluated in the degradation of 4-nitrophenol. To optimize the process, we conducted the effect of various parameters, including reaction time, catalyst amount, temperature, pH, isoelectric point, and 4-NP concentration on the photodegradation process. The optimal conditions for the removal of 4-NP were obtained in the presence of DAZY decorated with Fe and Ce under ultraviolet radiation, 40 µL of hydrogen peroxide, 0.03 g of photocatalyst, and a concentration of 5 × 10–4 M 4-nitrophenol during 90 min. The mineralization of 4-nitrophenol (4-NP) was verified through COD experiments, resulting in a removal efficiency of 72.80%. Studying Hinshelwood’s equations revealed that the reaction rate was pseudo-first-order. The catalyst can be reused up to five times while maintaining its catalytic activity. Furthermore, the proposed degradation mechanism is introduced.
期刊介绍:
Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.