A novel ZIF-67@g-C3N4–based colorimetric sensor with large hierarchical structure and enhanced surface area for sensitive detection of nitrite in drinking water
Mohib Ullah, Subbulakshmi Ganesan, Bharti Kumari, Mariam Zafar, Kareem Yusuf, Shaymaa Abed Hussein, Salman Khalaf Issa, Forat H. Alsultany, Manmeet Singh, Li Zhengxin, Sami Ullah
{"title":"A novel ZIF-67@g-C3N4–based colorimetric sensor with large hierarchical structure and enhanced surface area for sensitive detection of nitrite in drinking water","authors":"Mohib Ullah, Subbulakshmi Ganesan, Bharti Kumari, Mariam Zafar, Kareem Yusuf, Shaymaa Abed Hussein, Salman Khalaf Issa, Forat H. Alsultany, Manmeet Singh, Li Zhengxin, Sami Ullah","doi":"10.1007/s11581-024-05756-2","DOIUrl":null,"url":null,"abstract":"<p>The detrimental effects of nitrite (NO<sub>2</sub><sup>−</sup>) on environment as well as living organisms have attracted immense interest to sensitively detect it in the drinking water system. So, for this purpose, we have developed a highly sensible and portable colorimetric NO<sub>2</sub><sup>−</sup> sensor based on the CZ-2 nanocomposite (NC). The three dimensional (3D) with large hierarchical structure CZ-2 NC sensor was formed by the coupling of g-C<sub>3</sub>N<sub>4</sub> nanosheets (NSs) and ZIF-67 nanoparticles (NPs) by a simple hydrothermal process. The prepared sensor was successfully employed to detect NO<sub>2</sub><sup>−</sup>, which manifests higher sensing characteristics like extensive sensitivity with large detection linear range of (1 × 10<sup>−3</sup>–7.20 × 10<sup>−1</sup> μM) having a <i>R</i><sup>2</sup> of 0.999 and a lowest limit of detection (LOD) value of 0.16 ± 0.05 nM. Further, it also manifests excellent reversibility, better stability and durability, optimal reproducibility and superior repeatability. In addition, the sensor also depicts large selectivity towards NO<sub>2</sub><sup>−</sup> and improved practicability in real water sampling. These commendable sensing properties were mainly ascribed to the large conductive structure and highest surface area of the CZ-2 NC structure. Thus, as a result, we analyzed that our fabricated colorimetric sensor was highly potent, its applications in the sensing fields can be explored for future perspective.</p>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11581-024-05756-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The detrimental effects of nitrite (NO2−) on environment as well as living organisms have attracted immense interest to sensitively detect it in the drinking water system. So, for this purpose, we have developed a highly sensible and portable colorimetric NO2− sensor based on the CZ-2 nanocomposite (NC). The three dimensional (3D) with large hierarchical structure CZ-2 NC sensor was formed by the coupling of g-C3N4 nanosheets (NSs) and ZIF-67 nanoparticles (NPs) by a simple hydrothermal process. The prepared sensor was successfully employed to detect NO2−, which manifests higher sensing characteristics like extensive sensitivity with large detection linear range of (1 × 10−3–7.20 × 10−1 μM) having a R2 of 0.999 and a lowest limit of detection (LOD) value of 0.16 ± 0.05 nM. Further, it also manifests excellent reversibility, better stability and durability, optimal reproducibility and superior repeatability. In addition, the sensor also depicts large selectivity towards NO2− and improved practicability in real water sampling. These commendable sensing properties were mainly ascribed to the large conductive structure and highest surface area of the CZ-2 NC structure. Thus, as a result, we analyzed that our fabricated colorimetric sensor was highly potent, its applications in the sensing fields can be explored for future perspective.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.