A new perspective on Kaluza–Klein theories

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
L. Horoto, F.G. Scholtz
{"title":"A new perspective on Kaluza–Klein theories","authors":"L. Horoto,&nbsp;F.G. Scholtz","doi":"10.1016/j.aop.2024.169748","DOIUrl":null,"url":null,"abstract":"<div><p>Assuming that the geometry of spacetime is uniquely determined by the energy–momentum tensor of matter alone, i.e. without any interactions, enables us to construct the Lagrangian from which the metric of higher dimensional spacetime follows. From the geodesic equations that follow, it becomes clear that the incorrect mass of elementary particles predicted by Kaluza–Klein theories arises from the assumption that in the absence of gravity the solution to the Einstein field equations reduces to the Minkowski metric. From construction of a consistent theory of <span><math><mrow><mn>4</mn><mi>D</mi></mrow></math></span> electromagnetism, we find that this assumption does not only result in the incorrect mass of elementary particles, but also the incorrect value of the cosmological constant. This suggests that these incorrect predictions, which are often regarded as major flaws of Kaluza–Klein theories, just reflect the inconsistency of the assumption that the solution to Einstein field equations reduces to Minkowski metric in the absence of gravity and Weyl invariance which is the symmetry of gauge theories in <span><math><mrow><mn>4</mn><mi>D</mi></mrow></math></span> spacetime. Abandoning this assumption results in modification of general relativity. We show that the unified description of fundamental interactions naturally incorporates the Higgs mechanism. For non-Abelian gauge fields, we find that the manifold comprising the extra dimensions has to be a group manifold and show that the standard model is realized in 16<span><math><mi>D</mi></math></span> spacetime. We show that charge and spin are the same concept, but what makes them different is that the former follows from symmetry of <span><math><mrow><mn>4</mn><mi>D</mi></mrow></math></span> spacetime while the latter follows from symmetry of the internal space.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"469 ","pages":"Article 169748"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624001556","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Assuming that the geometry of spacetime is uniquely determined by the energy–momentum tensor of matter alone, i.e. without any interactions, enables us to construct the Lagrangian from which the metric of higher dimensional spacetime follows. From the geodesic equations that follow, it becomes clear that the incorrect mass of elementary particles predicted by Kaluza–Klein theories arises from the assumption that in the absence of gravity the solution to the Einstein field equations reduces to the Minkowski metric. From construction of a consistent theory of 4D electromagnetism, we find that this assumption does not only result in the incorrect mass of elementary particles, but also the incorrect value of the cosmological constant. This suggests that these incorrect predictions, which are often regarded as major flaws of Kaluza–Klein theories, just reflect the inconsistency of the assumption that the solution to Einstein field equations reduces to Minkowski metric in the absence of gravity and Weyl invariance which is the symmetry of gauge theories in 4D spacetime. Abandoning this assumption results in modification of general relativity. We show that the unified description of fundamental interactions naturally incorporates the Higgs mechanism. For non-Abelian gauge fields, we find that the manifold comprising the extra dimensions has to be a group manifold and show that the standard model is realized in 16D spacetime. We show that charge and spin are the same concept, but what makes them different is that the former follows from symmetry of 4D spacetime while the latter follows from symmetry of the internal space.

卡鲁扎-克莱因理论的新视角
假设时空几何唯一地由物质的能量-动量张量决定,即没有任何相互作用,我们就能构建拉格朗日,并由此得出高维时空的度量。根据接下来的大地方程,我们可以清楚地看到,卡鲁扎-克莱因理论所预言的基本粒子的质量不正确,是由于假定在没有引力的情况下,爱因斯坦场方程的解还原为闵科夫斯基度量。通过构建一致的电磁学理论,我们发现这一假设不仅导致基本粒子的质量不正确,还导致宇宙学常数的值不正确。这表明,这些通常被认为是卡卢扎-克莱因理论主要缺陷的错误预言,只是反映了在没有引力和韦尔不变性(时空中规整理论的对称性)的情况下,爱因斯坦场方程的解还原为闵科夫斯基公设这一假设的不一致性。放弃这一假设会导致广义相对论的修正。我们表明,基本相互作用的统一描述自然包含了希格斯机制。对于非阿贝尔规量场,我们发现包含额外维度的流形必须是群流形,并证明标准模型是在 16 时空中实现的。我们证明电荷和自旋是相同的概念,但它们的不同之处在于前者源于时空的对称性,而后者源于内部空间的对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信