Christian X. Young, Chloe A. Browning, Ryan J. Thurber, Matthew R. Smalley, Michael J. Liesenfelt, Jason P. Hayward, Nicole McFarlane, Michael P. Cooper, Jeff R. Preston
{"title":"Analysis of a Prototype Multi-Detector Fast-Neutron Radiography Panel","authors":"Christian X. Young, Chloe A. Browning, Ryan J. Thurber, Matthew R. Smalley, Michael J. Liesenfelt, Jason P. Hayward, Nicole McFarlane, Michael P. Cooper, Jeff R. Preston","doi":"10.1007/s10921-024-01106-4","DOIUrl":null,"url":null,"abstract":"<div><p>A multi-detector fast neutron radiography panel was built using the previous work on scalable neutron radiography using the IDEAS ROSSPAD readout module. A new aluminum housing was built to accommodate a large number of detectors tiled together. Additional changes to startup and processing code were made to operate the detector as one cohesive unit. Spatial resolution of the full panel using Cs-137 gammas was reported to be 0.42 line pairs per centimeter at 90% MTF and 2.09 line pairs per centimeter at 10% MTF. Three neutron radiographs generated using a Cf-252 fission neutron source were used to determine the spatial resolution of the panel for neutrons. The experiments had 90% MTF values of 0.24, 0.3, and 0.27 line pairs per centimeter and 10% MTF values of 1.30, 1.46, and 1.40 line pairs per centimeter. An example neutron radiograph was also used to prove that the radiography panel can perform true neutron radiography.\n</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-024-01106-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01106-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
A multi-detector fast neutron radiography panel was built using the previous work on scalable neutron radiography using the IDEAS ROSSPAD readout module. A new aluminum housing was built to accommodate a large number of detectors tiled together. Additional changes to startup and processing code were made to operate the detector as one cohesive unit. Spatial resolution of the full panel using Cs-137 gammas was reported to be 0.42 line pairs per centimeter at 90% MTF and 2.09 line pairs per centimeter at 10% MTF. Three neutron radiographs generated using a Cf-252 fission neutron source were used to determine the spatial resolution of the panel for neutrons. The experiments had 90% MTF values of 0.24, 0.3, and 0.27 line pairs per centimeter and 10% MTF values of 1.30, 1.46, and 1.40 line pairs per centimeter. An example neutron radiograph was also used to prove that the radiography panel can perform true neutron radiography.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.