Yongchen Song, Xinyi Wang, Zihan Dong, Baixin An, Haiwei Xu, Tao Liu, Peng Wu, Yanghui Li
{"title":"Review and Outlook on Fracturing Technology and Mechanism of Hydrate-Bearing Sediments","authors":"Yongchen Song, Xinyi Wang, Zihan Dong, Baixin An, Haiwei Xu, Tao Liu, Peng Wu, Yanghui Li","doi":"10.1021/acs.energyfuels.4c02524","DOIUrl":null,"url":null,"abstract":"Natural gas hydrates (NGHs) are widely distributed in marine and permafrost regions with huge reserves, which are considered one of the important potential sources for future clean energy. At present, China, Japan, the United States, Canada, etc. have conducted several trials; however, they all face varying degrees of challenges, such as low gas production efficiency and discontinuous production periods. In the oil and gas industry, hydraulic fracturing is a mature and highly efficient method for enhancing production through pressurization. Therefore, the successful application of fracturing technology to the NGH reservior is an urgently needed solution and could be a potentially revolutionary technology. This study summarizes the main recent fracturing advances in the hydrate field; it outlines the existing fracturing equipment for the NGH reservoir that differs from traditional oil and gas reservoir development, discussing the more efficient numerical simulation methods from the unit cell, experimental scale, to field scale. Additionally, it investigates the main controlling factors of fracturing behavior, such as the effects of fracturing fluid (viscosity and injection rate) and sample conditions (saturation, stress anisotropy, matrix, and natural fractures). The relationships and mechanisms proposed herein can provide new insights for understanding the fracturing behavior during hydrate exploration and constructing safe fracturing and extraction technologies.","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"58 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.energyfuels.4c02524","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Natural gas hydrates (NGHs) are widely distributed in marine and permafrost regions with huge reserves, which are considered one of the important potential sources for future clean energy. At present, China, Japan, the United States, Canada, etc. have conducted several trials; however, they all face varying degrees of challenges, such as low gas production efficiency and discontinuous production periods. In the oil and gas industry, hydraulic fracturing is a mature and highly efficient method for enhancing production through pressurization. Therefore, the successful application of fracturing technology to the NGH reservior is an urgently needed solution and could be a potentially revolutionary technology. This study summarizes the main recent fracturing advances in the hydrate field; it outlines the existing fracturing equipment for the NGH reservoir that differs from traditional oil and gas reservoir development, discussing the more efficient numerical simulation methods from the unit cell, experimental scale, to field scale. Additionally, it investigates the main controlling factors of fracturing behavior, such as the effects of fracturing fluid (viscosity and injection rate) and sample conditions (saturation, stress anisotropy, matrix, and natural fractures). The relationships and mechanisms proposed herein can provide new insights for understanding the fracturing behavior during hydrate exploration and constructing safe fracturing and extraction technologies.
期刊介绍:
Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.