Vibrational lifetimes and viscoelastic properties of ultrastable glasses

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Jan Grießer, Lars Pastewka
{"title":"Vibrational lifetimes and viscoelastic properties of ultrastable glasses","authors":"Jan Grießer, Lars Pastewka","doi":"10.1103/physreve.110.025001","DOIUrl":null,"url":null,"abstract":"Amorphous solids are viscoelastic. They dissipate energy when deformed at finite rate and finite temperature. We here use analytic theory and molecular simulations to demonstrate that linear viscoelastic dissipation can be directly related to the static and dynamic properties of the fundamental vibrational excitations of an amorphous system. We study ultrastable glasses that do not age, i.e., that remain in stable minima of the potential energy surface at finite temperature. Our simulations show four types of vibrational modes, which differ in spatial localization, similarity to plane waves and vibrational lifetimes. At frequencies below the Boson peak, the viscoelastic response can be split into contributions from plane-wave and quasilocalized modes. We derive a parameter-free expression for the viscoelastic storage and loss moduli for both of these modes. Our results show that the dynamics of microscopic dissipation, in particular the lifetimes of the modes, determine the viscoelastic response only at high frequency. Quasilocalized modes dominate the linear viscoelastic response at intermediate frequencies below the Boson peak.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.025001","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Amorphous solids are viscoelastic. They dissipate energy when deformed at finite rate and finite temperature. We here use analytic theory and molecular simulations to demonstrate that linear viscoelastic dissipation can be directly related to the static and dynamic properties of the fundamental vibrational excitations of an amorphous system. We study ultrastable glasses that do not age, i.e., that remain in stable minima of the potential energy surface at finite temperature. Our simulations show four types of vibrational modes, which differ in spatial localization, similarity to plane waves and vibrational lifetimes. At frequencies below the Boson peak, the viscoelastic response can be split into contributions from plane-wave and quasilocalized modes. We derive a parameter-free expression for the viscoelastic storage and loss moduli for both of these modes. Our results show that the dynamics of microscopic dissipation, in particular the lifetimes of the modes, determine the viscoelastic response only at high frequency. Quasilocalized modes dominate the linear viscoelastic response at intermediate frequencies below the Boson peak.

Abstract Image

超稳定玻璃的振动寿命和粘弹特性
无定形固体具有粘弹性。它们在有限速率和有限温度下变形时会耗散能量。我们在此利用解析理论和分子模拟来证明,线性粘弹性耗散与非晶态系统基本振动激发的静态和动态特性直接相关。我们研究的是不会老化的超稳定玻璃,即在有限温度下保持稳定的势能面最小值。我们的模拟显示了四种类型的振动模式,它们在空间定位、与平面波的相似性和振动寿命方面各不相同。在低于玻色子峰值的频率下,粘弹性响应可分为平面波模式和准定位模式。我们推导出了这两种模式的粘弹性存储模量和损耗模量的无参数表达式。我们的结果表明,微观耗散动力学,尤其是模式的寿命,仅在高频率下决定粘弹响应。在低于玻色子峰值的中频,准聚焦模式主导着线性粘弹响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信