{"title":"Pathogenic Leptospira Detection in Environmental Contaminant Water Sources by Highly Performance Antibody Absorption Polystyrene Agglutinating Particles","authors":"Patcharapan Suwannin, Duangporn Polpanich, Noureddine Lebaz, Kween Saimuang, Jirawan Jindakaew, Pramuan Tangboriboonrat, Kulachart Jangpatarapongsa, Abdelhamid Elaissari","doi":"10.1002/ppsc.202400023","DOIUrl":null,"url":null,"abstract":"Leptospirosis is a re‐emerging bacterial zoonotic disease that affects both humans and animals, with a significantly higher incidence in tropical and sub‐tropical regions. Disease control, epidemiology, and surveillance rely on a One Health approach, as accurate detection can be applied to humans, animals, and the environment. This study represents the first attempt to develop a method for detecting the pathogenic <jats:italic>Leptospira santarosai</jats:italic> serovar Shermani based on the latex agglutination reaction. The serological activity of the antibody is examined to achieve a high titer of antibody before adsorption onto polystyrene particles. Using a pH medium of 6.8–7.8, total antibody adsorption of up to 3 mg m<jats:sup>−2</jats:sup> is achieved. Particle agglutination is observed after incubating the antibody‐adsorbed PS with leptospiral culture for 4 min, revealing a detection limit of 1.7 × 10<jats:sup>2</jats:sup> leptospires mL<jats:sup>−1</jats:sup>. Interestingly, the detection limit increased by 1000 times when observing agglutination using spectrophotometer. The test exhibits high specificity with Shermani and shows negligible cross‐agglutination with non‐pathogenic <jats:italic>Leptospira</jats:italic> and water‐borne bacteria. Agglutination testing in collected water samples from natural sources demonstrates a good correlation with culture technique. This simple and rapid leptospires agglutination detection method can be applied as a screening test in environmental, human, and animal specimens.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"371 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400023","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Leptospirosis is a re‐emerging bacterial zoonotic disease that affects both humans and animals, with a significantly higher incidence in tropical and sub‐tropical regions. Disease control, epidemiology, and surveillance rely on a One Health approach, as accurate detection can be applied to humans, animals, and the environment. This study represents the first attempt to develop a method for detecting the pathogenic Leptospira santarosai serovar Shermani based on the latex agglutination reaction. The serological activity of the antibody is examined to achieve a high titer of antibody before adsorption onto polystyrene particles. Using a pH medium of 6.8–7.8, total antibody adsorption of up to 3 mg m−2 is achieved. Particle agglutination is observed after incubating the antibody‐adsorbed PS with leptospiral culture for 4 min, revealing a detection limit of 1.7 × 102 leptospires mL−1. Interestingly, the detection limit increased by 1000 times when observing agglutination using spectrophotometer. The test exhibits high specificity with Shermani and shows negligible cross‐agglutination with non‐pathogenic Leptospira and water‐borne bacteria. Agglutination testing in collected water samples from natural sources demonstrates a good correlation with culture technique. This simple and rapid leptospires agglutination detection method can be applied as a screening test in environmental, human, and animal specimens.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.