Tuning the Properties of Iron Oxide Nanoparticles in Thermal Decomposition Synthesis: A Comparative Study of the Influence of Temperature, Ligand Length and Ligand Concentration
Marion Görke, Sherif Okeil, Dirk Menzel, Bogdan Semenenko, Georg Garnweitner
{"title":"Tuning the Properties of Iron Oxide Nanoparticles in Thermal Decomposition Synthesis: A Comparative Study of the Influence of Temperature, Ligand Length and Ligand Concentration","authors":"Marion Görke, Sherif Okeil, Dirk Menzel, Bogdan Semenenko, Georg Garnweitner","doi":"10.1002/ppsc.202400059","DOIUrl":null,"url":null,"abstract":"Whilst the synthesis of magnetic nanoparticles via the non‐aqueous thermal decomposition method has proven to lead to the most defined products, the tailoring of their properties is still largely achieved empirically, in particular for metal oxide nanoparticles. In this paper, the influence of ligands with varying length and concentration on the properties of the resulting magnetic nanoparticles is studied, and it is shown that the reaction temperature rather than the ligand length or concentration crucially influences the properties in various ways. The obtained particles are characterized with regard to their size, morphology, crystallinity, and magnetic characteristics, using techniques like transmission electron microscopy (TEM), X‐ray diffraction (XRD), and superconducting quantum interference device (SQUID) magnetometry measurements. It is thereby shown that the optimum choice of ligand and synthesis conditions not only serves to ensure monodispersity of the resulting particles but also to realize high colloidal stability and redispersibility.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400059","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Whilst the synthesis of magnetic nanoparticles via the non‐aqueous thermal decomposition method has proven to lead to the most defined products, the tailoring of their properties is still largely achieved empirically, in particular for metal oxide nanoparticles. In this paper, the influence of ligands with varying length and concentration on the properties of the resulting magnetic nanoparticles is studied, and it is shown that the reaction temperature rather than the ligand length or concentration crucially influences the properties in various ways. The obtained particles are characterized with regard to their size, morphology, crystallinity, and magnetic characteristics, using techniques like transmission electron microscopy (TEM), X‐ray diffraction (XRD), and superconducting quantum interference device (SQUID) magnetometry measurements. It is thereby shown that the optimum choice of ligand and synthesis conditions not only serves to ensure monodispersity of the resulting particles but also to realize high colloidal stability and redispersibility.
期刊介绍:
Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)).
Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices.
Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems.
Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others.
Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.