From haystack to high precision: advanced sequencing methods to unraveling circulating tumor DNA mutations

IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tamires Ferreira da Silva, Juscelino Carvalho de Azevedo, Eliel Barbosa Teixeira, Samir Mansour Moraes Casseb, Fabiano Cordeiro Moreira, Paulo Pimentel de Assumpção, Sidney Emanuel Batista dos Santos, Danielle Queiroz Calcagno
{"title":"From haystack to high precision: advanced sequencing methods to unraveling circulating tumor DNA mutations","authors":"Tamires Ferreira da Silva, Juscelino Carvalho de Azevedo, Eliel Barbosa Teixeira, Samir Mansour Moraes Casseb, Fabiano Cordeiro Moreira, Paulo Pimentel de Assumpção, Sidney Emanuel Batista dos Santos, Danielle Queiroz Calcagno","doi":"10.3389/fmolb.2024.1423470","DOIUrl":null,"url":null,"abstract":"Identifying mutations in cancer-associated genes to guide patient treatments is essential for precision medicine. Circulating tumor DNA (ctDNA) offers valuable insights for early cancer detection, treatment assessment, and surveillance. However, a key issue in ctDNA analysis from the bloodstream is the choice of a technique with adequate sensitivity to identify low frequent molecular changes. Next-generation sequencing (NGS) technology, evolving from parallel to long-read capabilities, enhances ctDNA mutation analysis. In the present review, we describe different NGS approaches for identifying ctDNA mutation, discussing challenges to standardized methodologies, cost, specificity, clinical context, and bioinformatics expertise for optimal NGS application.","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2024.1423470","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying mutations in cancer-associated genes to guide patient treatments is essential for precision medicine. Circulating tumor DNA (ctDNA) offers valuable insights for early cancer detection, treatment assessment, and surveillance. However, a key issue in ctDNA analysis from the bloodstream is the choice of a technique with adequate sensitivity to identify low frequent molecular changes. Next-generation sequencing (NGS) technology, evolving from parallel to long-read capabilities, enhances ctDNA mutation analysis. In the present review, we describe different NGS approaches for identifying ctDNA mutation, discussing challenges to standardized methodologies, cost, specificity, clinical context, and bioinformatics expertise for optimal NGS application.
从干草堆到高精度:揭示循环肿瘤 DNA 变异的先进测序方法
识别癌症相关基因的突变以指导患者的治疗对精准医疗至关重要。循环肿瘤 DNA(ctDNA)为早期癌症检测、治疗评估和监测提供了宝贵的信息。然而,从血液中分析ctDNA的一个关键问题是选择一种具有足够灵敏度的技术来识别低频分子变化。下一代测序(NGS)技术从并行到长读取能力的发展,增强了ctDNA突变分析的能力。在本综述中,我们介绍了用于鉴定ctDNA突变的不同 NGS 方法,讨论了标准化方法、成本、特异性、临床背景和生物信息学专业知识对 NGS 最佳应用的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Molecular Biosciences
Frontiers in Molecular Biosciences Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.20
自引率
4.00%
发文量
1361
审稿时长
14 weeks
期刊介绍: Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology. Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life. In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信