Roles of density-related diffusion and signal-dependent motilities in a chemotaxis–consumption system

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Genglin Li, Yuan Lou
{"title":"Roles of density-related diffusion and signal-dependent motilities in a chemotaxis–consumption system","authors":"Genglin Li, Yuan Lou","doi":"10.1007/s00526-024-02802-9","DOIUrl":null,"url":null,"abstract":"<p>This study examines an initial-boundary value problem involving the system </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} u_t = \\Delta \\big (u^m\\phi (v)\\big ), \\\\[1mm] v_t = \\Delta v-uv. \\\\[1mm] \\end{array} \\right. \\qquad (\\star ) \\end{aligned}$$</span><p>in a smoothly bounded domain <span>\\(\\Omega \\subset \\mathbb {R}^n\\)</span> with no-flux boundary conditions, where <span>\\(m, n\\ge 1\\)</span>. The motility function <span>\\(\\phi \\in C^0([0,\\infty )) \\cap C^3((0,\\infty ))\\)</span> is positive on <span>\\((0,\\infty )\\)</span> and satisfies </p><span>$$\\begin{aligned} \\liminf _{\\xi \\searrow 0} \\frac{\\phi (\\xi )}{\\xi ^{\\alpha }}&gt;0 \\qquad \\hbox { and }\\qquad \\limsup _{\\xi \\searrow 0} \\frac{|\\phi '(\\xi )|}{\\xi ^{\\alpha -1}}&lt;\\infty , \\end{aligned}$$</span><p>for some <span>\\(\\alpha &gt;0\\)</span>. Through distinct approaches, we establish that, for sufficiently regular initial data, in two- and higher-dimensional contexts, if <span>\\(\\alpha \\in [1,2m)\\)</span>, then <span>\\((\\star )\\)</span> possesses global weak solutions, while in one-dimensional settings, the same conclusion holds for <span>\\(\\alpha &gt;0\\)</span>, and notably, the solution remains uniformly bounded when <span>\\(\\alpha \\ge 1\\)</span>. Furthermore, for the one-dimensional case where <span>\\(\\alpha \\ge 1\\)</span>, the bounded solution additionally possesses the convergence property that </p><span>$$\\begin{aligned} u(\\cdot ,t)\\overset{*}{\\rightharpoonup }\\ u_{\\infty } \\ \\ \\hbox {in } L^{\\infty }(\\Omega ) \\hbox { and } v(\\cdot ,t)\\rightarrow 0 \\ \\ \\hbox { in }\\,\\,W^{1,\\infty }(\\Omega ) \\qquad \\hbox {as } t\\rightarrow \\infty , \\end{aligned}$$</span><p>with <span>\\(u_{\\infty }\\in L^{\\infty }(\\Omega )\\)</span>. Further conditions on the initial data enable the identification of admissible initial data for which <span>\\(u_{\\infty }\\)</span> exhibits spatial heterogeneity. </p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02802-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines an initial-boundary value problem involving the system

$$\begin{aligned} \left\{ \begin{array}{l} u_t = \Delta \big (u^m\phi (v)\big ), \\[1mm] v_t = \Delta v-uv. \\[1mm] \end{array} \right. \qquad (\star ) \end{aligned}$$

in a smoothly bounded domain \(\Omega \subset \mathbb {R}^n\) with no-flux boundary conditions, where \(m, n\ge 1\). The motility function \(\phi \in C^0([0,\infty )) \cap C^3((0,\infty ))\) is positive on \((0,\infty )\) and satisfies

$$\begin{aligned} \liminf _{\xi \searrow 0} \frac{\phi (\xi )}{\xi ^{\alpha }}>0 \qquad \hbox { and }\qquad \limsup _{\xi \searrow 0} \frac{|\phi '(\xi )|}{\xi ^{\alpha -1}}<\infty , \end{aligned}$$

for some \(\alpha >0\). Through distinct approaches, we establish that, for sufficiently regular initial data, in two- and higher-dimensional contexts, if \(\alpha \in [1,2m)\), then \((\star )\) possesses global weak solutions, while in one-dimensional settings, the same conclusion holds for \(\alpha >0\), and notably, the solution remains uniformly bounded when \(\alpha \ge 1\). Furthermore, for the one-dimensional case where \(\alpha \ge 1\), the bounded solution additionally possesses the convergence property that

$$\begin{aligned} u(\cdot ,t)\overset{*}{\rightharpoonup }\ u_{\infty } \ \ \hbox {in } L^{\infty }(\Omega ) \hbox { and } v(\cdot ,t)\rightarrow 0 \ \ \hbox { in }\,\,W^{1,\infty }(\Omega ) \qquad \hbox {as } t\rightarrow \infty , \end{aligned}$$

with \(u_{\infty }\in L^{\infty }(\Omega )\). Further conditions on the initial data enable the identification of admissible initial data for which \(u_{\infty }\) exhibits spatial heterogeneity.

密度相关扩散和信号依赖运动在趋化消耗系统中的作用
本研究探讨了一个涉及系统$$\begin{aligned}的初始边界值问题。\u_t = \Delta \big (u^m\phi (v)\big ), v_t = \Delta v-uv.\\end{array}。\右边\qquad (\star ) \end{aligned}$$ in a smooth bounded domain \(\Omega \subset \mathbb {R}^n\) with no-flux boundary conditions, where \(m, n\ge 1\).运动函数 \(\phi\in C^0([0,\infty ))\cap C^3((0,\infty ))\) 在\((0,\infty )\)上是正的,并且满足$$\begin{aligned}。\liminf _{xi \searrow 0} \frac{phi (\xi )}{xi ^{\alpha }}>;0 \qquad \hbox { and }\qquad \limsup _{xi \searrow 0} \frac{|\phi '(\xi )|}{xi ^{\alpha -1}}<\infty , \end{aligned}$$ for some \(\alpha >0\).通过不同的方法,我们确定,对于足够规则的初始数据,在二维和高维背景下,如果(\(\alpha \in [1,2m)),那么(((\star ))具有全局弱解,而在一维背景下,同样的结论对(\(\alpha >0\)成立,值得注意的是,当(\(\alpha \ge 1\)时,解仍然是均匀有界的。此外,对于一维的情况,当(\alpha \ge 1\ )时,有界解还具有收敛性,即 $$\begin{aligned} u(\cdot ,t)\overset{*}{\rightharpoonup }\ u_{\infty }。\\hbox {in }L^{infty }(\Omega )\hbox { and } v(\cdot ,t)\rightarrow 0 \\hbox { in },\,W^{1、\u_{\infty }\in L^{\infty }(\Omega )\).关于初始数据的进一步条件使我们能够确定\(u_{\infty }\) 表现出空间异质性的可接受初始数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信