{"title":"Convergence of critical points for a phase-field approximation of 1D cohesive fracture energies","authors":"Marco Bonacini, Flaviana Iurlano","doi":"10.1007/s00526-024-02786-6","DOIUrl":null,"url":null,"abstract":"<p>Variational models for cohesive fracture are based on the idea that the fracture energy is released gradually as the crack opening grows. Recently, [21] proposed a variational approximation via <span>\\(\\Gamma \\)</span>-convergence of a class of cohesive fracture energies by phase-field energies of Ambrosio-Tortorelli type, which may be also used as regularization for numerical simulations. In this paper we address the question of the asymptotic behaviour of critical points of the phase-field energies in the one-dimensional setting: we show that they converge to a selected class of critical points of the limit functional. Conversely, each critical point in this class can be approximated by a family of critical points of the phase-field functionals.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02786-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Variational models for cohesive fracture are based on the idea that the fracture energy is released gradually as the crack opening grows. Recently, [21] proposed a variational approximation via \(\Gamma \)-convergence of a class of cohesive fracture energies by phase-field energies of Ambrosio-Tortorelli type, which may be also used as regularization for numerical simulations. In this paper we address the question of the asymptotic behaviour of critical points of the phase-field energies in the one-dimensional setting: we show that they converge to a selected class of critical points of the limit functional. Conversely, each critical point in this class can be approximated by a family of critical points of the phase-field functionals.