Convergence of critical points for a phase-field approximation of 1D cohesive fracture energies

IF 2.1 2区 数学 Q1 MATHEMATICS
Marco Bonacini, Flaviana Iurlano
{"title":"Convergence of critical points for a phase-field approximation of 1D cohesive fracture energies","authors":"Marco Bonacini, Flaviana Iurlano","doi":"10.1007/s00526-024-02786-6","DOIUrl":null,"url":null,"abstract":"<p>Variational models for cohesive fracture are based on the idea that the fracture energy is released gradually as the crack opening grows. Recently, [21] proposed a variational approximation via <span>\\(\\Gamma \\)</span>-convergence of a class of cohesive fracture energies by phase-field energies of Ambrosio-Tortorelli type, which may be also used as regularization for numerical simulations. In this paper we address the question of the asymptotic behaviour of critical points of the phase-field energies in the one-dimensional setting: we show that they converge to a selected class of critical points of the limit functional. Conversely, each critical point in this class can be approximated by a family of critical points of the phase-field functionals.</p>","PeriodicalId":9478,"journal":{"name":"Calculus of Variations and Partial Differential Equations","volume":"48 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calculus of Variations and Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00526-024-02786-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Variational models for cohesive fracture are based on the idea that the fracture energy is released gradually as the crack opening grows. Recently, [21] proposed a variational approximation via \(\Gamma \)-convergence of a class of cohesive fracture energies by phase-field energies of Ambrosio-Tortorelli type, which may be also used as regularization for numerical simulations. In this paper we address the question of the asymptotic behaviour of critical points of the phase-field energies in the one-dimensional setting: we show that they converge to a selected class of critical points of the limit functional. Conversely, each critical point in this class can be approximated by a family of critical points of the phase-field functionals.

Abstract Image

一维内聚断裂能相场近似临界点的收敛性
内聚断裂的变分模型基于这样一种思想,即断裂能量随着裂缝开口的增大而逐渐释放。最近,[21] 通过 Ambrosio-Tortorelli 类型的相场能,提出了一类内聚断裂能的(\(\Gamma \)-收敛)变分法近似,它也可用作数值模拟的正则化。在本文中,我们探讨了相场能量临界点在一维环境中的渐近行为问题:我们证明了它们收敛于极限函数的一类选定临界点。反之,该类临界点中的每个临界点都可以用相场函数的临界点族来近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
4.80%
发文量
224
审稿时长
6 months
期刊介绍: Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives. This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include: - Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory - Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems - Variational problems in differential and complex geometry - Variational methods in global analysis and topology - Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems - Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions - Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信