Xiaohui Tian, Bo Qiu, Yueyang Ni, Jiuyi Chen, Lingfeng Li, Yipeng Cao and Siwen Zhao
{"title":"Divergent response of energy exchange to heatwaves from flux tower observations among various vegetation types","authors":"Xiaohui Tian, Bo Qiu, Yueyang Ni, Jiuyi Chen, Lingfeng Li, Yipeng Cao and Siwen Zhao","doi":"10.1088/1748-9326/ad69aa","DOIUrl":null,"url":null,"abstract":"The increasing frequency of European heatwaves and the associated impacts on ecosystems have raised widespread concern during the last two decades. The partitioning of surface energy between latent and sensible heat fluxes plays a pivotal role in regulating heat and water exchange between the land surface and the atmosphere. However, the responses of surface energy partitioning during heatwave events and the contributions of changes in energy partitioning to heatwave development have been underexplored. Here, we investigated the responses of surface energy exchange to temperature extremes during four devastating European heatwaves (2003, 2010, 2018, and 2022) based on long‒term observations from 31 flux towers. Our results demonstrated that the divergent responses of surface energy exchange to heatwaves were modulated by vegetation type and background climate in Europe. Forests maintained similar latent heat fluxes as the climatological mean but largely increased sensible heat under heat‒stressed conditions. While grasslands and croplands tended to increase sensible heat by suppressing latent heat during heatwaves, especially under water‒stressed conditions. Furthermore, the changes in surface energy partitioning strengthened positive land‒atmosphere feedbacks during the heatwave period, leading to unprecedented temperature extremes. This study highlights the importance of surface energy partitioning in land‒atmosphere interactions and heatwave developments.","PeriodicalId":11747,"journal":{"name":"Environmental Research Letters","volume":"45 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1748-9326/ad69aa","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing frequency of European heatwaves and the associated impacts on ecosystems have raised widespread concern during the last two decades. The partitioning of surface energy between latent and sensible heat fluxes plays a pivotal role in regulating heat and water exchange between the land surface and the atmosphere. However, the responses of surface energy partitioning during heatwave events and the contributions of changes in energy partitioning to heatwave development have been underexplored. Here, we investigated the responses of surface energy exchange to temperature extremes during four devastating European heatwaves (2003, 2010, 2018, and 2022) based on long‒term observations from 31 flux towers. Our results demonstrated that the divergent responses of surface energy exchange to heatwaves were modulated by vegetation type and background climate in Europe. Forests maintained similar latent heat fluxes as the climatological mean but largely increased sensible heat under heat‒stressed conditions. While grasslands and croplands tended to increase sensible heat by suppressing latent heat during heatwaves, especially under water‒stressed conditions. Furthermore, the changes in surface energy partitioning strengthened positive land‒atmosphere feedbacks during the heatwave period, leading to unprecedented temperature extremes. This study highlights the importance of surface energy partitioning in land‒atmosphere interactions and heatwave developments.
期刊介绍:
Environmental Research Letters (ERL) is a high-impact, open-access journal intended to be the meeting place of the research and policy communities concerned with environmental change and management.
The journal''s coverage reflects the increasingly interdisciplinary nature of environmental science, recognizing the wide-ranging contributions to the development of methods, tools and evaluation strategies relevant to the field. Submissions from across all components of the Earth system, i.e. land, atmosphere, cryosphere, biosphere and hydrosphere, and exchanges between these components are welcome.