Sadia Sultana, Jannatul Naima, Md. Shamsul Alam, Md. Shah Alam, Giovanni Crupi, Mohammad A. Alim
{"title":"Comprehensive characterization of a high-performance double heterojunction InGaAs pHEMT for linear power-efficient amplifiers applications","authors":"Sadia Sultana, Jannatul Naima, Md. Shamsul Alam, Md. Shah Alam, Giovanni Crupi, Mohammad A. Alim","doi":"10.1002/jnm.3277","DOIUrl":null,"url":null,"abstract":"<p>This article centers its attention on the phenomenon of electrostatics, linearity, analogue, and RF performance of a 0.5 μm × (2 × 100) μm double heterojunction AlGaAs/InGaAs/GaAs pHEMT using on-wafer DC and RF measurements up to 50 GHz. With a high I<sub>ON</sub>/I<sub>OFF</sub> ratio (1.21 × 10<sup>7</sup>) and low subthreshold slope (72.7 mV/dec), a flat and high transconductance over a wide range of <i>V</i><sub>gs</sub> has been achieved for the tested device. Furthermore, the input intercept and higher-order voltage intercept point both attained large values with low intermodulation and harmonic distortion. Regarding RF parameters, the intrinsic gain has been achieved up to 28 dB. The GBW up to 750 GHz was attained, with the highest <i>f</i><sub>T</sub> and <i>f</i><sub>max</sub> values being 24.5 GHz and 99.3 GHz, respectively. Since the device has very low intrinsic capacitance, parameters like TFP, GFP, and GTFP also showed excellent results. The high intrinsic gain and TGF indicate ample potential of the device for use as an amplifier. Investigating the parameters reveals the device to have very good linearity and amplifying capability.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3277","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article centers its attention on the phenomenon of electrostatics, linearity, analogue, and RF performance of a 0.5 μm × (2 × 100) μm double heterojunction AlGaAs/InGaAs/GaAs pHEMT using on-wafer DC and RF measurements up to 50 GHz. With a high ION/IOFF ratio (1.21 × 107) and low subthreshold slope (72.7 mV/dec), a flat and high transconductance over a wide range of Vgs has been achieved for the tested device. Furthermore, the input intercept and higher-order voltage intercept point both attained large values with low intermodulation and harmonic distortion. Regarding RF parameters, the intrinsic gain has been achieved up to 28 dB. The GBW up to 750 GHz was attained, with the highest fT and fmax values being 24.5 GHz and 99.3 GHz, respectively. Since the device has very low intrinsic capacitance, parameters like TFP, GFP, and GTFP also showed excellent results. The high intrinsic gain and TGF indicate ample potential of the device for use as an amplifier. Investigating the parameters reveals the device to have very good linearity and amplifying capability.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.