{"title":"Characterization and stable isotopic fingerprinting of mine seepage in hyperarid environments: An example of the Namib Lead & Zinc mine, Namibia","authors":"","doi":"10.1016/j.gexplo.2024.107554","DOIUrl":null,"url":null,"abstract":"<div><p>Mine drainage at the Namib Lead & Zinc mine in the hyperarid environment of the Namib Desert close to Swakopmund, Namibia, has been investigated using mineralogical, hydrochemical, and isotopic methods. The principal ore minerals are galena and sphalerite. Mine drainage is neutral due to the reactions with the marble gangue rock. Mine water seepage is of the Na-Ca-Cl-SO<sub>4</sub> type and sources of dissolved ions are likely halite and gypsum in the unsaturated zone above the mine. Concentrations of dissolved metals are relatively low, and the principal attenuation mechanism of metals is probably their adsorption on ferric minerals because equilibrium of the seepage water with secondary minerals that host the metals is not attained. Based on strongly enriched δ<sup>2</sup>H (up to 13.27 ‰) and δ<sup>18</sup>O (up to 4.5 ‰) values, seepage water originates from advective fog and is strongly evaporated after the fog deposition. The high δ<sup>13</sup>C(DIC) values indicate equilibrium with carbonates and CO<sub>2</sub> de-gassing. The δ<sup>34</sup>S(SO<sub>4</sub>) values are enriched in shallower depths, probably because of pedogenic gypsum dissolution and then the δ<sup>34</sup>S values decrease with depth, probably due to the increasing input of sulfur from sulfides. Mine drainage at the Namib Lead & Zinc mine does not represent any risk for the environment due to its neutral character and relatively low seepage water volumes caused by high degree of aridity.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674224001705","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Mine drainage at the Namib Lead & Zinc mine in the hyperarid environment of the Namib Desert close to Swakopmund, Namibia, has been investigated using mineralogical, hydrochemical, and isotopic methods. The principal ore minerals are galena and sphalerite. Mine drainage is neutral due to the reactions with the marble gangue rock. Mine water seepage is of the Na-Ca-Cl-SO4 type and sources of dissolved ions are likely halite and gypsum in the unsaturated zone above the mine. Concentrations of dissolved metals are relatively low, and the principal attenuation mechanism of metals is probably their adsorption on ferric minerals because equilibrium of the seepage water with secondary minerals that host the metals is not attained. Based on strongly enriched δ2H (up to 13.27 ‰) and δ18O (up to 4.5 ‰) values, seepage water originates from advective fog and is strongly evaporated after the fog deposition. The high δ13C(DIC) values indicate equilibrium with carbonates and CO2 de-gassing. The δ34S(SO4) values are enriched in shallower depths, probably because of pedogenic gypsum dissolution and then the δ34S values decrease with depth, probably due to the increasing input of sulfur from sulfides. Mine drainage at the Namib Lead & Zinc mine does not represent any risk for the environment due to its neutral character and relatively low seepage water volumes caused by high degree of aridity.
期刊介绍:
Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics.
Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to:
define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas.
analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation.
evaluate effects of historical mining activities on the surface environment.
trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices.
assess and quantify natural and technogenic radioactivity in the environment.
determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis.
assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches.
Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.