Keep your friends close, and your enemies closer: structural properties of negative relationships on Twitter

IF 3 2区 计算机科学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jack Tacchi, Chiara Boldrini, Andrea Passarella, Marco Conti
{"title":"Keep your friends close, and your enemies closer: structural properties of negative relationships on Twitter","authors":"Jack Tacchi, Chiara Boldrini, Andrea Passarella, Marco Conti","doi":"10.1140/epjds/s13688-024-00485-y","DOIUrl":null,"url":null,"abstract":"<p>The Ego Network Model (ENM) is a model for the structural organisation of relationships, rooted in evolutionary anthropology, that is found ubiquitously in social contexts. It takes the perspective of a single user (Ego) and organises their contacts (Alters) into a series of (typically 5) concentric circles of decreasing intimacy and increasing size. Alters are sorted based on their tie strength to the Ego, however, this is difficult to measure directly. Traditionally, the interaction frequency has been used as a proxy but this misses the qualitative aspects of connections, such as signs (i.e. polarity), which have been shown to provide extremely useful information. However, the sign of an online social relationship is usually an implicit piece of information, which needs to be estimated by interaction data from Online Social Networks (OSNs), making sign prediction in OSNs a research challenge in and of itself. This work aims to bring the ENM into the signed networks domain by investigating the interplay of signed connections with the ENM. This paper delivers 2 main contributions. Firstly, a new and data-efficient method of signing relationships between individuals using sentiment analysis and, secondly, we provide an in-depth look at the properties of Signed Ego Networks (SENs), using 9 Twitter datasets of various categories of users. We find that negative connections are generally over-represented in the active part of the Ego Networks, suggesting that Twitter greatly over-emphasises negative relationships with respect to “offline” social networks. Further, users who use social networks for professional reasons have an even greater share of negative connections. Despite this, we also found weak signs that less negative users tend to allocate more cognitive effort to <i>individual</i> relationships and thus have smaller ego networks on average. All in all, even though <i>structurally</i> ENMs are known to be similar in both offline and online social networks, our results indicate that relationships on Twitter tend to nurture more negativity than offline contexts.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"89 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-024-00485-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Ego Network Model (ENM) is a model for the structural organisation of relationships, rooted in evolutionary anthropology, that is found ubiquitously in social contexts. It takes the perspective of a single user (Ego) and organises their contacts (Alters) into a series of (typically 5) concentric circles of decreasing intimacy and increasing size. Alters are sorted based on their tie strength to the Ego, however, this is difficult to measure directly. Traditionally, the interaction frequency has been used as a proxy but this misses the qualitative aspects of connections, such as signs (i.e. polarity), which have been shown to provide extremely useful information. However, the sign of an online social relationship is usually an implicit piece of information, which needs to be estimated by interaction data from Online Social Networks (OSNs), making sign prediction in OSNs a research challenge in and of itself. This work aims to bring the ENM into the signed networks domain by investigating the interplay of signed connections with the ENM. This paper delivers 2 main contributions. Firstly, a new and data-efficient method of signing relationships between individuals using sentiment analysis and, secondly, we provide an in-depth look at the properties of Signed Ego Networks (SENs), using 9 Twitter datasets of various categories of users. We find that negative connections are generally over-represented in the active part of the Ego Networks, suggesting that Twitter greatly over-emphasises negative relationships with respect to “offline” social networks. Further, users who use social networks for professional reasons have an even greater share of negative connections. Despite this, we also found weak signs that less negative users tend to allocate more cognitive effort to individual relationships and thus have smaller ego networks on average. All in all, even though structurally ENMs are known to be similar in both offline and online social networks, our results indicate that relationships on Twitter tend to nurture more negativity than offline contexts.

Abstract Image

亲近朋友,亲近敌人:推特上负面关系的结构特性
自我网络模型(ENM)是一种关系结构组织模型,植根于进化人类学,在社会环境中随处可见。它从单个用户(自我)的角度出发,将他们的联系人(Alters)组织成一系列(通常为 5 个)同心圆,这些同心圆的亲密程度依次递减,规模依次增大。联系人根据与自我的联系强度进行排序,但这很难直接测量。传统上,互动频率被用作一种替代指标,但这忽略了联系的质量方面,如标志(即极性),而这些标志已被证明能提供极为有用的信息。然而,在线社交关系的符号通常是一种隐含信息,需要通过在线社交网络(OSN)中的交互数据来估算,因此在 OSN 中进行符号预测本身就是一项研究挑战。这项工作旨在通过研究签名连接与 ENM 的相互作用,将 ENM 引入签名网络领域。本文有两大贡献。首先,我们提出了一种新的、数据效率高的方法,利用情感分析对个人之间的关系进行签名;其次,我们利用 9 个不同类别用户的 Twitter 数据集深入研究了签名自我网络(SEN)的特性。我们发现,在自我网络的活跃部分,负面联系的比例普遍过高,这表明与 "离线 "社交网络相比,Twitter 过度强调负面关系。此外,因职业原因而使用社交网络的用户的负面连接比例更高。尽管如此,我们也发现了一些微弱的迹象,表明负面关系较少的用户倾向于将更多的认知努力分配给个人关系,因此平均而言,他们的自我网络较小。总而言之,尽管众所周知线下和线上社交网络的ENM在结构上是相似的,但我们的研究结果表明,Twitter上的人际关系往往比线下更容易滋生消极情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Data Science
EPJ Data Science MATHEMATICS, INTERDISCIPLINARY APPLICATIONS -
CiteScore
6.10
自引率
5.60%
发文量
53
审稿时长
13 weeks
期刊介绍: EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信