Is Cobalt in Li-Rich Layered Oxides for Li-Ion Batteries Necessary?

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Hyeongseon Choi, Annika Regitta Schuer, Hyein Moon, Georgian Melinte, Guk-Tae Kim, Jakob Asenbauer, Arefeh Kazzazi, Matthias Kuenzel, Stefano Passerini
{"title":"Is Cobalt in Li-Rich Layered Oxides for Li-Ion Batteries Necessary?","authors":"Hyeongseon Choi,&nbsp;Annika Regitta Schuer,&nbsp;Hyein Moon,&nbsp;Georgian Melinte,&nbsp;Guk-Tae Kim,&nbsp;Jakob Asenbauer,&nbsp;Arefeh Kazzazi,&nbsp;Matthias Kuenzel,&nbsp;Stefano Passerini","doi":"10.1002/celc.202400391","DOIUrl":null,"url":null,"abstract":"<p>Cobalt is considered an essential element for layered cathode active materials supporting enhanced lithium-ion conductivity and structural stability. Herein, we investigated the influence of Co concentration on the physicochemical properties and electrochemical performance of lithium-rich layered oxides (LRLOs) with different Co content (Li<sub>1.2</sub>Ni<sub>0.2-x/2</sub>Mn<sub>0.6-x/2</sub>Co<sub>x</sub>O<sub>2</sub>, x=0, 0.04, and 0.08). Though the presence of Co grants structural stability to LRLOs, superior long-term cycling stability is achieved with the Co-free LRLO retaining 88.1 % of the initial specific capacity (vs. 75.9 % of Li<sub>1.2</sub>Ni<sub>0.16</sub>Mn<sub>0.56</sub>Co<sub>0.08</sub>O<sub>2</sub>) after 300 galvanostatic cycles at 250 mA g<sup>−1</sup> (1 C). The chemical stability on the surface of LRLOs containing Co declines faster, indicating a higher bulk structural stability not being the primary determinant of the LRLOs’ cycling performance. Ex-situ investigations indicate that the superior cycling stability of Co-free LRLO is obtained by reducing the Mn-related redox at discharge, which contributes to the large degree of polarization and low energy efficiency. Finally, the full-cell configured with the optimized LRLO as cathode and graphite anode delivers an energy density of 464 Wh kg<sup>−1</sup> at C/10, and 74.4 % and 94.3 % of retention in discharge specific capacity and average voltage at the 1000<sup>th</sup> cycle, demonstrating the applicability of Co-free LRLO for sustainable LIBs.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 17","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400391","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400391","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Cobalt is considered an essential element for layered cathode active materials supporting enhanced lithium-ion conductivity and structural stability. Herein, we investigated the influence of Co concentration on the physicochemical properties and electrochemical performance of lithium-rich layered oxides (LRLOs) with different Co content (Li1.2Ni0.2-x/2Mn0.6-x/2CoxO2, x=0, 0.04, and 0.08). Though the presence of Co grants structural stability to LRLOs, superior long-term cycling stability is achieved with the Co-free LRLO retaining 88.1 % of the initial specific capacity (vs. 75.9 % of Li1.2Ni0.16Mn0.56Co0.08O2) after 300 galvanostatic cycles at 250 mA g−1 (1 C). The chemical stability on the surface of LRLOs containing Co declines faster, indicating a higher bulk structural stability not being the primary determinant of the LRLOs’ cycling performance. Ex-situ investigations indicate that the superior cycling stability of Co-free LRLO is obtained by reducing the Mn-related redox at discharge, which contributes to the large degree of polarization and low energy efficiency. Finally, the full-cell configured with the optimized LRLO as cathode and graphite anode delivers an energy density of 464 Wh kg−1 at C/10, and 74.4 % and 94.3 % of retention in discharge specific capacity and average voltage at the 1000th cycle, demonstrating the applicability of Co-free LRLO for sustainable LIBs.

Abstract Image

Abstract Image

锂离子电池中富锂层状氧化物中的钴是否必要?
钴被认为是层状正极活性材料的重要元素,可增强锂离子传导性和结构稳定性。在此,我们研究了钴浓度对不同钴含量的富锂层状氧化物(Li1.2Ni0.2-x/2Mn0.6-x/2CoxO2,x=0、0.04 和 0.08)的理化性质和电化学性能的影响。虽然 Co 的存在赋予了 LRLO 结构稳定性,但无 Co 的 LRLO 在 250 mA g-1 (1 C) 的条件下循环 300 次后仍能保持 88.1% 的初始比容量(相比之下,Li1.2Ni0.16Mn0.56Co0.08O2 为 75.9%),从而实现了卓越的长期循环稳定性。含 Co 的 LRLOs 表面的化学稳定性下降得更快,这表明较高的整体结构稳定性并不是 LRLOs 循环性能的主要决定因素。原位研究表明,无钴 LRLO 优异的循环稳定性是通过减少放电时与锰有关的氧化还原作用获得的,而氧化还原作用是造成极化程度大和能量效率低的原因。最后,以优化的 LRLO 为阴极和石墨阳极配置的全电池在 C/10 时的能量密度为 464 Wh kg-1,在第 1000 次循环时,放电比容量和平均电压的保持率分别为 74.4% 和 94.3%,这表明无 Co LRLO 适用于可持续 LIB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信