{"title":"Electronic structure regulation of Fe-doped Ni2P nanocrystals towards durable electrocatalytic oxygen evolution","authors":"Ya Liu, Xing Cao, Jia-Jia Liu, Mei-Sheng Han, Gao-Wei Zhang, Yu-Bin Zhao, Huan-Hui Chen, Liang Yu, Jun-Rong Zeng, Zhi-Kai Cheng, Liu-Biao Zhong, Li-Juan Song, Ye-Jun Qiu","doi":"10.1007/s12598-024-02845-z","DOIUrl":null,"url":null,"abstract":"<div><p>The inherent electrocatalytic potential of transition metal phosphides (TMPs) for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phosphorus atoms and transition metals. Here, we introduce Fe into Ni<sub>2</sub>P nanocrystals by thermal injection synthesis method, and anchor them on nickel foam (NF) by facile spraying to prepare self-supporting oxygen evolution reaction (OER) electrocatalyst. Promisingly, the optimized electrode of Ni<sub>2</sub>P-Fe-2/NF demonstrates low overpotentials of 212 mV with 10 mA·cm<sup>−2</sup> and a 0.9% decay within 300 h test of 50 mA·cm<sup>−2</sup>. Notably, when electrode size was expanded to 600 cm<sup>2</sup> and applied to a larger electrolyzer, its 9 h decay rate at 6 A current was only 1.69%. Characterization results show that Fe doped NiOOH is generated during OER reaction as actual catalyst. Results from density functional theory (DFT) computations suggest that Fe doping shifts NiOOH d-band center to Fermi level, lowering critical *OOH intermediates formation energy barrier during the OER reaction. These findings inform the large-scale industrial application of TMPs as robust electrocatalysts.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"43 12","pages":"6405 - 6415"},"PeriodicalIF":9.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-02845-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The inherent electrocatalytic potential of transition metal phosphides (TMPs) for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phosphorus atoms and transition metals. Here, we introduce Fe into Ni2P nanocrystals by thermal injection synthesis method, and anchor them on nickel foam (NF) by facile spraying to prepare self-supporting oxygen evolution reaction (OER) electrocatalyst. Promisingly, the optimized electrode of Ni2P-Fe-2/NF demonstrates low overpotentials of 212 mV with 10 mA·cm−2 and a 0.9% decay within 300 h test of 50 mA·cm−2. Notably, when electrode size was expanded to 600 cm2 and applied to a larger electrolyzer, its 9 h decay rate at 6 A current was only 1.69%. Characterization results show that Fe doped NiOOH is generated during OER reaction as actual catalyst. Results from density functional theory (DFT) computations suggest that Fe doping shifts NiOOH d-band center to Fermi level, lowering critical *OOH intermediates formation energy barrier during the OER reaction. These findings inform the large-scale industrial application of TMPs as robust electrocatalysts.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.