{"title":"A cost-effective pyrrole additive for realizing highly stable Zn anode","authors":"Qian Wang, Bo-Hui Xu, Yi-Xun Du, Ling-Yao Kuang, Zhe-Shuai Lin, Xing-Xing Gu","doi":"10.1007/s12598-024-02927-y","DOIUrl":null,"url":null,"abstract":"<p>In recent years, researchers have increasingly focused on aqueous rechargeable Zn-ion batteries (AZIBs) as a cost-effective and safe alternative to lithium-ion batteries for energy storage. Nevertheless, the limited reversibility of the Zn anode and the low coulombic efficiency of the electroplating process limit the application of AZIBs. In this work, pyrrole is employed as a cost-effective electrolyte additive for stabilizing the Zn anode for the first time. By altering the coordination environment of Zn (H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>, chemical and hydrogen evolution corrosion was reduced, and a molecular interface layer was in-situ constructed on the surface of the metal Zn anode, thus effectively inhibiting the corrosion of Zn anode and the growth of dendrites. In addition, the molecular interface layer based on pyrrole can effectively regulate the uniform deposition of Zn ions and limit the 2D diffusion of Zn ions. Therefore, the electrochemical performance of the metal Zn anode is greatly improved in the pyrrole-based electrolyte. At the current density of 1 mA·cm<sup>−2</sup>, the stable cycle can exceed 1200 h, and the average Coulomb efficiency is as high as 99%. Moreover, the full battery can have more than 400 stable cycles with a reversible capacity 247.9 mAh·g<sup>−1</sup> at a current density 0.5 A·g<sup>−1</sup> when assembled with V<sub>2</sub>O<sub>5</sub> cathodes. This work provides a simple and feasible strategy for realizing the high performance of aqueous Zn-ion batteries.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"77 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02927-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, researchers have increasingly focused on aqueous rechargeable Zn-ion batteries (AZIBs) as a cost-effective and safe alternative to lithium-ion batteries for energy storage. Nevertheless, the limited reversibility of the Zn anode and the low coulombic efficiency of the electroplating process limit the application of AZIBs. In this work, pyrrole is employed as a cost-effective electrolyte additive for stabilizing the Zn anode for the first time. By altering the coordination environment of Zn (H2O)62+, chemical and hydrogen evolution corrosion was reduced, and a molecular interface layer was in-situ constructed on the surface of the metal Zn anode, thus effectively inhibiting the corrosion of Zn anode and the growth of dendrites. In addition, the molecular interface layer based on pyrrole can effectively regulate the uniform deposition of Zn ions and limit the 2D diffusion of Zn ions. Therefore, the electrochemical performance of the metal Zn anode is greatly improved in the pyrrole-based electrolyte. At the current density of 1 mA·cm−2, the stable cycle can exceed 1200 h, and the average Coulomb efficiency is as high as 99%. Moreover, the full battery can have more than 400 stable cycles with a reversible capacity 247.9 mAh·g−1 at a current density 0.5 A·g−1 when assembled with V2O5 cathodes. This work provides a simple and feasible strategy for realizing the high performance of aqueous Zn-ion batteries.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.