{"title":"Bidirectional brain image translation using transfer learning from generic pre-trained models","authors":"Fatima Haimour , Rizik Al-Sayyed , Waleed Mahafza , Omar S. Al-Kadi","doi":"10.1016/j.cviu.2024.104100","DOIUrl":null,"url":null,"abstract":"<div><p>Brain imaging plays a crucial role in the diagnosis and treatment of various neurological disorders, providing valuable insights into the structure and function of the brain. Techniques such as magnetic resonance imaging (MRI) and computed tomography (CT) enable non-invasive visualization of the brain, aiding in the understanding of brain anatomy, abnormalities, and functional connectivity. However, cost and radiation dose may limit the acquisition of specific image modalities, so medical image synthesis can be used to generate required medical images without actual addition. CycleGAN and other GANs are valuable tools for generating synthetic images across various fields. In the medical domain, where obtaining labeled medical images is labor-intensive and expensive, addressing data scarcity is a major challenge. Recent studies propose using transfer learning to overcome this issue. This involves adapting pre-trained CycleGAN models, initially trained on non-medical data, to generate realistic medical images. In this work, transfer learning was applied to the task of MR-CT image translation and vice versa using 18 pre-trained non-medical models, and the models were fine-tuned to have the best result. The models’ performance was evaluated using four widely used image quality metrics: Peak-signal-to-noise-ratio, Structural Similarity Index, Universal Quality Index, and Visual Information Fidelity. Quantitative evaluation and qualitative perceptual analysis by radiologists demonstrate the potential of transfer learning in medical imaging and the effectiveness of the generic pre-trained model. The results provide compelling evidence of the model’s exceptional performance, which can be attributed to the high quality and similarity of the training images to actual human brain images. These results underscore the significance of carefully selecting appropriate and representative training images to optimize performance in brain image analysis tasks.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224001814","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Brain imaging plays a crucial role in the diagnosis and treatment of various neurological disorders, providing valuable insights into the structure and function of the brain. Techniques such as magnetic resonance imaging (MRI) and computed tomography (CT) enable non-invasive visualization of the brain, aiding in the understanding of brain anatomy, abnormalities, and functional connectivity. However, cost and radiation dose may limit the acquisition of specific image modalities, so medical image synthesis can be used to generate required medical images without actual addition. CycleGAN and other GANs are valuable tools for generating synthetic images across various fields. In the medical domain, where obtaining labeled medical images is labor-intensive and expensive, addressing data scarcity is a major challenge. Recent studies propose using transfer learning to overcome this issue. This involves adapting pre-trained CycleGAN models, initially trained on non-medical data, to generate realistic medical images. In this work, transfer learning was applied to the task of MR-CT image translation and vice versa using 18 pre-trained non-medical models, and the models were fine-tuned to have the best result. The models’ performance was evaluated using four widely used image quality metrics: Peak-signal-to-noise-ratio, Structural Similarity Index, Universal Quality Index, and Visual Information Fidelity. Quantitative evaluation and qualitative perceptual analysis by radiologists demonstrate the potential of transfer learning in medical imaging and the effectiveness of the generic pre-trained model. The results provide compelling evidence of the model’s exceptional performance, which can be attributed to the high quality and similarity of the training images to actual human brain images. These results underscore the significance of carefully selecting appropriate and representative training images to optimize performance in brain image analysis tasks.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems