Makram A. Fakhri, Bassam G. Rasheed, Malik J. Abd-Alhussain, Evan T. Salim, Ahmad S. Azzahrani, Ali Basem, Subash C. B. Gopinath
{"title":"Synthesis of PVA-Gold and Silver Nanoparticles via PLAL to Improve the Performance of the PCF-SPR Glucose Sensor","authors":"Makram A. Fakhri, Bassam G. Rasheed, Malik J. Abd-Alhussain, Evan T. Salim, Ahmad S. Azzahrani, Ali Basem, Subash C. B. Gopinath","doi":"10.1007/s11468-024-02434-x","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a photonic crystal fiber (PCF) biosensor using the surface plasmon resonance (SPR) phenomenon. Active plasmonic nanomaterials, consisting of gold (Au) and silver (Ag) nanoparticles, were prepared via the pulsed laser ablation in liquids (PLAL) method, characterized using different techniques. These nanoparticles were subsequently mixed with a polyvinyl alcohol (PVA) solution to enhance sensitivity and compatibility for sensor applications. The PVA-Au/Ag nanoparticles were coated on the outer surface of the PCF for a simplified sensor configuration. The results showed that the sensitivities for PCF coated with PVA-gold and PVA-silver NPs are 1927 and 1397 nm/RIU with a maximum resolution of 2.51 × 10<sup>−5</sup> RIU for samples with glucose concentration in water ranging from 80 to 600 mg/dl and maximum FOM are 853 and 855 for PCF coated with gold and silver NPs, respectively. Notably, this innovative sensor design, coupled with comprehensive nanoparticle characterization and PVA integration, holds great promise for precise and real-time glucose monitoring in many practical applications.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"77 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02434-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes a photonic crystal fiber (PCF) biosensor using the surface plasmon resonance (SPR) phenomenon. Active plasmonic nanomaterials, consisting of gold (Au) and silver (Ag) nanoparticles, were prepared via the pulsed laser ablation in liquids (PLAL) method, characterized using different techniques. These nanoparticles were subsequently mixed with a polyvinyl alcohol (PVA) solution to enhance sensitivity and compatibility for sensor applications. The PVA-Au/Ag nanoparticles were coated on the outer surface of the PCF for a simplified sensor configuration. The results showed that the sensitivities for PCF coated with PVA-gold and PVA-silver NPs are 1927 and 1397 nm/RIU with a maximum resolution of 2.51 × 10−5 RIU for samples with glucose concentration in water ranging from 80 to 600 mg/dl and maximum FOM are 853 and 855 for PCF coated with gold and silver NPs, respectively. Notably, this innovative sensor design, coupled with comprehensive nanoparticle characterization and PVA integration, holds great promise for precise and real-time glucose monitoring in many practical applications.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.