Muhammad Adnan , Nouman Ahmad , Pornpote Piumsomboon , Benjapon Chalermsinsuwan
{"title":"Sensitivity analysis of a dense discrete phase model for 3D simulations of a Tapered fluidized bed","authors":"Muhammad Adnan , Nouman Ahmad , Pornpote Piumsomboon , Benjapon Chalermsinsuwan","doi":"10.1016/j.partic.2024.07.019","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to conduct a sensitivity analysis of closure models and modeling parameters for the Dense Discrete Phase Modeling (DDPM) approach in order to investigate the hydrodynamics of a 3D lab-scale Tapered Fluidized Bed (TFB). The closure models and model parameters under investigation include the gas-solid drag force, viscous models, particle-particle interaction models, restitution coefficient, specularity coefficient, and rebound coefficient. The primary objective of this sensitivity analysis is to optimize the numerical model's performance. The numerical results, in terms of axial and lateral Solid Volume Fraction (SVF) profiles obtained from the sensitivity analysis, indicate that the drag force and restitution coefficient significantly influence the hydrodynamics of the TFB. Properly selecting these parameters could result in the improved performance of the numerical model. However, the sensitivity of turbulence models, particle-particle interaction models, specularity coefficient, and rebound coefficient has a lesser impact on the hydrodynamics results. This work concludes with the recommendation of a set of closure models and modeling parameters that offer the most accurate prediction of the hydrodynamics of the TFB.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"94 ","pages":"Pages 59-83"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001469","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to conduct a sensitivity analysis of closure models and modeling parameters for the Dense Discrete Phase Modeling (DDPM) approach in order to investigate the hydrodynamics of a 3D lab-scale Tapered Fluidized Bed (TFB). The closure models and model parameters under investigation include the gas-solid drag force, viscous models, particle-particle interaction models, restitution coefficient, specularity coefficient, and rebound coefficient. The primary objective of this sensitivity analysis is to optimize the numerical model's performance. The numerical results, in terms of axial and lateral Solid Volume Fraction (SVF) profiles obtained from the sensitivity analysis, indicate that the drag force and restitution coefficient significantly influence the hydrodynamics of the TFB. Properly selecting these parameters could result in the improved performance of the numerical model. However, the sensitivity of turbulence models, particle-particle interaction models, specularity coefficient, and rebound coefficient has a lesser impact on the hydrodynamics results. This work concludes with the recommendation of a set of closure models and modeling parameters that offer the most accurate prediction of the hydrodynamics of the TFB.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.