A reduced model for particle calcination for use in DEM/CFD simulations

IF 4.1 2区 材料科学 Q2 ENGINEERING, CHEMICAL
Lucas Mieg , Torben Bergold , Enric Illana Mahiques , Viktor Scherer , Martin Mönnigmann
{"title":"A reduced model for particle calcination for use in DEM/CFD simulations","authors":"Lucas Mieg ,&nbsp;Torben Bergold ,&nbsp;Enric Illana Mahiques ,&nbsp;Viktor Scherer ,&nbsp;Martin Mönnigmann","doi":"10.1016/j.partic.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>We treat the accurate simulation of the calcination reaction in particles, where the particles are large and, thus, the inner-particle processes must be resolved. Because these processes need to be described with coupled partial differential equations (PDEs) that must be solved numerically, the computation times for a single particle are too high for use in simulations that involve many particles. Simulations of this type arise when the Discrete Element Method (DEM) is combined with Computational Fluid Dynamics (CFD) to investigate industrial systems such as quicklime production in lime shaft kilns.</p><p>We show that, based on proper orthogonal decomposition and Galerkin projection, reduced models can be derived for single particles that provide the same spatial and temporal resolution as the original PDE models at a considerably reduced computational cost. Replacing the finite volume particle models with the reduced models results in an overall reduction of the reactor simulation time by about 40% for the sample system treated here.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"93 ","pages":"Pages 316-327"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674200124001305/pdfft?md5=d8e8fc673dd042642a600d801209ef5e&pid=1-s2.0-S1674200124001305-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001305","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We treat the accurate simulation of the calcination reaction in particles, where the particles are large and, thus, the inner-particle processes must be resolved. Because these processes need to be described with coupled partial differential equations (PDEs) that must be solved numerically, the computation times for a single particle are too high for use in simulations that involve many particles. Simulations of this type arise when the Discrete Element Method (DEM) is combined with Computational Fluid Dynamics (CFD) to investigate industrial systems such as quicklime production in lime shaft kilns.

We show that, based on proper orthogonal decomposition and Galerkin projection, reduced models can be derived for single particles that provide the same spatial and temporal resolution as the original PDE models at a considerably reduced computational cost. Replacing the finite volume particle models with the reduced models results in an overall reduction of the reactor simulation time by about 40% for the sample system treated here.

Abstract Image

用于 DEM/CFD 模拟的颗粒煅烧简化模型
我们对粒子中的煅烧反应进行了精确模拟,由于粒子较大,因此必须解决粒子内部过程的问题。由于这些过程需要用必须数值求解的耦合偏微分方程(PDE)来描述,因此单个粒子的计算时间过长,无法用于涉及许多粒子的模拟。当离散元素法(DEM)与计算流体动力学(CFD)相结合来研究石灰窑中的生石灰生产等工业系统时,就会出现此类模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Particuology
Particuology 工程技术-材料科学:综合
CiteScore
6.70
自引率
2.90%
发文量
1730
审稿时长
32 days
期刊介绍: The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles. Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors. Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology. Key topics concerning the creation and processing of particulates include: -Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales -Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes -Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc. -Experimental and computational methods for visualization and analysis of particulate system. These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信