Boosting alkaline water splitting efficiency: NiOOH–MnOOH heterojunctions via in situ anodic oxidation†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuru Zhou, Jing Hu, Yinan Liu, Wenyu Fan, Panpan Tao, Rui Yang, Haitao Huang, Xun Cao, Haijin Li and Siwei Li
{"title":"Boosting alkaline water splitting efficiency: NiOOH–MnOOH heterojunctions via in situ anodic oxidation†","authors":"Yuru Zhou, Jing Hu, Yinan Liu, Wenyu Fan, Panpan Tao, Rui Yang, Haitao Huang, Xun Cao, Haijin Li and Siwei Li","doi":"10.1039/D4QM00512K","DOIUrl":null,"url":null,"abstract":"<p >Designing noble metal-free electrocatalysts remains a challenge for the oxygen evolution reaction (OER) in alkaline solutions. In this study, we present a facile electrodeposition approach coupled with an <em>in situ</em> anodic oxidation method to synthesize NiOOH–MnS/NF on nickel foam (NF), successfully creating NiOOH–MnOOH/NF heterojunctions to boost OER performance under alkaline conditions. The heterojunction's synergistic effect significantly modulates the adsorption energy of the rate-determining step (RDS), thereby enhancing the intrinsic electrocatalytic activity of the NiOOH–MnOOH/NF electrocatalyst. Furthermore, the introduction of SO<small><sub>4</sub></small><small><sup>2−</sup></small> leads to a variable degree of electron loss in both Mn and Ni, reducing adsorption strength of the OER intermediates and thus optimizing reaction kinetics. The as-prepared NiOOH–MnOOH/NF electrocatalyst demonstrates exceptional OER performance in 1.0 M KOH, achieving a current density of 100 mA cm<small><sup>−2</sup></small> with a Tafel slope of 52.3 mV dec<small><sup>−1</sup></small> and a minimal overpotential of 391 mV. Utilizing NiOOH–MnOOH/NF as a bifunctional electrode for overall water splitting (OWS), the system operates at a low potential of 1.66 V at 10 mA cm<small><sup>−2</sup></small>, showcasing its excellent durability. This work offers novel insights and promising prospects for the advancement and practical application of non-precious metal electrocatalysts in the field of electrocatalytic water splitting.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00512k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing noble metal-free electrocatalysts remains a challenge for the oxygen evolution reaction (OER) in alkaline solutions. In this study, we present a facile electrodeposition approach coupled with an in situ anodic oxidation method to synthesize NiOOH–MnS/NF on nickel foam (NF), successfully creating NiOOH–MnOOH/NF heterojunctions to boost OER performance under alkaline conditions. The heterojunction's synergistic effect significantly modulates the adsorption energy of the rate-determining step (RDS), thereby enhancing the intrinsic electrocatalytic activity of the NiOOH–MnOOH/NF electrocatalyst. Furthermore, the introduction of SO42− leads to a variable degree of electron loss in both Mn and Ni, reducing adsorption strength of the OER intermediates and thus optimizing reaction kinetics. The as-prepared NiOOH–MnOOH/NF electrocatalyst demonstrates exceptional OER performance in 1.0 M KOH, achieving a current density of 100 mA cm−2 with a Tafel slope of 52.3 mV dec−1 and a minimal overpotential of 391 mV. Utilizing NiOOH–MnOOH/NF as a bifunctional electrode for overall water splitting (OWS), the system operates at a low potential of 1.66 V at 10 mA cm−2, showcasing its excellent durability. This work offers novel insights and promising prospects for the advancement and practical application of non-precious metal electrocatalysts in the field of electrocatalytic water splitting.

Abstract Image

提高碱性水分离效率:通过原位阳极氧化实现 NiOOH-MnOOH 异质结
设计不含贵金属的电催化剂仍然是碱性溶液中氧进化反应(OER)的一项挑战。在本研究中,我们提出了一种简便的电沉积方法,并结合原位阳极氧化法在泡沫镍(NF)上合成了 NiOOH-MnS/NF,成功地创建了 NiOOH-MnOOH/NF 异质结,从而提高了碱性条件下的 OER 性能。异质结的协同效应显著调节了决定速率步骤(RDS)的吸附能,从而提高了 NiOOH-MnOOH/NF 电催化剂的内在电催化活性。此外,SO42- 的引入会导致锰和镍的电子损失程度不同,从而降低对 OER 中间产物的吸附强度,进而优化反应动力学。制备的 NiOOH-MnOOH/NF 电催化剂在 1.0 M KOH 中表现出卓越的 OER 性能,电流密度达到 100 mA cm-2,塔菲尔斜率为 52.3 mV dec-1,过电位最低为 391 mV。利用 NiOOH-MnOOH/NF 作为整体水分离(OWS)的双功能电极,该系统可在 10 mA cm-2 的条件下以 1.66 V 的低电位运行,显示出其卓越的耐用性。这项研究为非贵金属电催化剂在电催化水分离领域的发展和实际应用提供了新的见解和广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信