Sub-THz Conformal Lens Integrated WR3.4 Antenna for High-Gain Beam-Steering

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Akanksha Bhutani;Joel Dittmer;Luca Valenziano;Thomas Zwick
{"title":"Sub-THz Conformal Lens Integrated WR3.4 Antenna for High-Gain Beam-Steering","authors":"Akanksha Bhutani;Joel Dittmer;Luca Valenziano;Thomas Zwick","doi":"10.1109/OJAP.2024.3412282","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the first conformal lens-integrated rectangular waveguide antenna that achieves high-gain beam-steering in the sub-THz range of 230 GHz to 330 GHz, to the best of the authors’ knowledge. The antenna consists of a \n<inline-formula> <tex-math>$2 \\times 32$ </tex-math></inline-formula>\n array of elliptical slots (E-slots) fed by a standard WR3.4 rectangular waveguide, ensuring that the antenna operates in its dominant TE10 mode. The E-slots are spaced by less than half of the guided wavelength, which causes them to be fed with a constant phase difference, thus leading to a progressive phase shift along the antenna aperture. Consequently, the antenna main lobe steers from -71° to -16° as the operating frequency varies from 230 GHz to 330 GHz, respectively. The WR3.4 antenna gain is enhanced by integrating it with a conformal plano-convex parabolic lens. The conformal lens is designed taking into consideration the phase center of multiple steered beams, which leads to a significant gain enhancement of up to 10 dB over the complete beam-steering range. The conformal lens integrated WR3.4 antenna achieves a peak antenna gain of up to 30 dBi. An antenna prototype is manufactured using a mechanical assembly concept based on standard computerized numerical control (CNC) milling and a laser ablation process. For the prototype, a WR3.4 waveguide with an H-plane bend and a short termination is fabricated in a brass split-block module using CNC milling. The E-slots are ablated on a \n<inline-formula> <tex-math>$\\mathrm {125~\\mu \\text { m} }$ </tex-math></inline-formula>\n thick aluminum (Al) sheet using a picosecond laser. Furthermore, a laser-structured die attach foil is interposed between the Al sheet and the brass split-block module to minimize the contact resistance between the E-slots and the WR3.4 waveguide. Additionally, a standard WR3.4 flange is manufactured to facilitate the antenna measurement.The conformal lens-integrated WR3.4 antenna has a compact size of \n<inline-formula> <tex-math>$ {\\mathrm {65~\\text {m}\\text {m} }} \\times {\\mathrm {30~\\text {m}\\text {m} }} \\times {\\mathrm {32.35~\\text {m}\\text {m} }}$ </tex-math></inline-formula>\n. It achieves the largest beam-steering range combined with the highest peak antenna gain in the broadband sub-THz range of 230 GHz to 330 GHz published to date.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552815","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10552815/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper demonstrates the first conformal lens-integrated rectangular waveguide antenna that achieves high-gain beam-steering in the sub-THz range of 230 GHz to 330 GHz, to the best of the authors’ knowledge. The antenna consists of a $2 \times 32$ array of elliptical slots (E-slots) fed by a standard WR3.4 rectangular waveguide, ensuring that the antenna operates in its dominant TE10 mode. The E-slots are spaced by less than half of the guided wavelength, which causes them to be fed with a constant phase difference, thus leading to a progressive phase shift along the antenna aperture. Consequently, the antenna main lobe steers from -71° to -16° as the operating frequency varies from 230 GHz to 330 GHz, respectively. The WR3.4 antenna gain is enhanced by integrating it with a conformal plano-convex parabolic lens. The conformal lens is designed taking into consideration the phase center of multiple steered beams, which leads to a significant gain enhancement of up to 10 dB over the complete beam-steering range. The conformal lens integrated WR3.4 antenna achieves a peak antenna gain of up to 30 dBi. An antenna prototype is manufactured using a mechanical assembly concept based on standard computerized numerical control (CNC) milling and a laser ablation process. For the prototype, a WR3.4 waveguide with an H-plane bend and a short termination is fabricated in a brass split-block module using CNC milling. The E-slots are ablated on a $\mathrm {125~\mu \text { m} }$ thick aluminum (Al) sheet using a picosecond laser. Furthermore, a laser-structured die attach foil is interposed between the Al sheet and the brass split-block module to minimize the contact resistance between the E-slots and the WR3.4 waveguide. Additionally, a standard WR3.4 flange is manufactured to facilitate the antenna measurement.The conformal lens-integrated WR3.4 antenna has a compact size of $ {\mathrm {65~\text {m}\text {m} }} \times {\mathrm {30~\text {m}\text {m} }} \times {\mathrm {32.35~\text {m}\text {m} }}$ . It achieves the largest beam-steering range combined with the highest peak antenna gain in the broadband sub-THz range of 230 GHz to 330 GHz published to date.
用于高增益波束赋形的亚千赫共形透镜集成 WR3.4 天线
据作者所知,本文展示了首个保形透镜集成矩形波导天线,该天线可在 230 GHz 至 330 GHz 的亚 THz 范围内实现高增益波束转向。该天线由一个 2 美元乘 32 美元的椭圆槽(E 槽)阵列组成,由标准 WR3.4 矩形波导馈电,确保天线在其主导 TE10 模式下工作。E 型槽的间距小于导波波长的一半,这就使它们以恒定的相位差馈电,从而导致沿天线孔径的渐进相移。因此,当工作频率从 230 千兆赫变化到 330 千兆赫时,天线主瓣分别从-71°转向-16°。通过将 WR3.4 天线与保角平凸抛物面透镜集成,增强了 WR3.4 天线的增益。保角透镜的设计考虑到了多个转向波束的相位中心,从而在整个波束转向范围内显著提高了增益,最高可达 10 dB。保角透镜集成 WR3.4 天线的天线增益峰值可达 30 dBi。天线原型是利用基于标准计算机数控(CNC)铣削和激光烧蚀工艺的机械装配概念制造的。在原型中,使用 CNC 铣削技术在黄铜分块模块中制作了带有 H 平面弯曲和短终端的 WR3.4 波导。E 槽是在一块 $\mathrm {125~\mu \text { m}}$ 厚的铝板上烧蚀的。}$ 厚的铝 (Al) 板上使用皮秒激光进行烧蚀。此外,还在铝片和黄铜分块模块之间插入了激光结构的芯片附着箔,以最大限度地减小 E 槽和 WR3.4 波导之间的接触电阻。此外,还制造了一个标准的 WR3.4 法兰,以方便天线的测量。保偏透镜集成 WR3.4 天线的尺寸非常小,仅为 $ {\mathrm {65~\text {m}\text {m} }}。}}\times {\mathrm {30~\text {m}\text {m} }}}}\times {\mathrm {32.35~\text {m}\text {m} }}$ 。它在 230 GHz 至 330 GHz 的宽带亚 THz 范围内实现了最大的波束转向范围和最高的天线增益峰值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信