Design, development, and construction of the new beam stoppers for CERN's injector complex

D. Baillard, E. Grenier-Boley, M. Dole, F. Deslande, R. Froeschl, T. Lorenzon, P. Moyret, R. Peron, A. Pilan Zanoni, C. Sharp, M. Timmins, M. Calviani
{"title":"Design, development, and construction of the new beam stoppers for CERN's injector complex","authors":"D. Baillard, E. Grenier-Boley, M. Dole, F. Deslande, R. Froeschl, T. Lorenzon, P. Moyret, R. Peron, A. Pilan Zanoni, C. Sharp, M. Timmins, M. Calviani","doi":"arxiv-2408.01074","DOIUrl":null,"url":null,"abstract":"Beam stoppers are installed in the transfer lines of the CERN accelerator\ncomplex; these components are used as part of the access safety system, which\nguarantees the safety of workers in the accelerators. They are designed to stop\none or at most a few pulses of the beam, where \"stop\" means the partial or\ncomplete absorption of the primary beam in such a way that the remaining\nunabsorbed primary or secondary beam remains below a specified threshold, as\ndefined by the needs of radiation protection. Prior to Long Shutdown 2 (LS2;\n2018--2021), beam stoppers in the injector complex were dimensioned for\nbeam-pulse energies between 9.0 and 30~kJ. The upgrade of the accelerator\ncomplex in the framework of the LHC Injectors Upgrade (LIU) project involves\nbeam-pulse energies of up to 92.5~kJ, meaning that these beam stoppers are not\nable to fulfill the new functional specifications. To cope with the LIU beam\nparameters and fulfil requirements for safety, maintainability, efficiency, and\nreliability, a new generation of 28 beam stoppers has been designed, built, and\ninstalled. The aim of this paper is to demonstrate the requirements-driven\ndesign of these new beam stoppers, outlining the main requirements along with a\ndescription of the design and structural assessments. This document presents\nthe implementation and integration of a standardized but adaptable design using\na unique 564-mm-long stopper core with a CuCr1Zr absorber and an Inconel~718\ndiluter, taking into account radiological and infrastructure challenges. The\ninstallation process is also described, and the first operational feedback\nreceived since LS2 is presented.","PeriodicalId":501374,"journal":{"name":"arXiv - PHYS - Instrumentation and Detectors","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Beam stoppers are installed in the transfer lines of the CERN accelerator complex; these components are used as part of the access safety system, which guarantees the safety of workers in the accelerators. They are designed to stop one or at most a few pulses of the beam, where "stop" means the partial or complete absorption of the primary beam in such a way that the remaining unabsorbed primary or secondary beam remains below a specified threshold, as defined by the needs of radiation protection. Prior to Long Shutdown 2 (LS2; 2018--2021), beam stoppers in the injector complex were dimensioned for beam-pulse energies between 9.0 and 30~kJ. The upgrade of the accelerator complex in the framework of the LHC Injectors Upgrade (LIU) project involves beam-pulse energies of up to 92.5~kJ, meaning that these beam stoppers are not able to fulfill the new functional specifications. To cope with the LIU beam parameters and fulfil requirements for safety, maintainability, efficiency, and reliability, a new generation of 28 beam stoppers has been designed, built, and installed. The aim of this paper is to demonstrate the requirements-driven design of these new beam stoppers, outlining the main requirements along with a description of the design and structural assessments. This document presents the implementation and integration of a standardized but adaptable design using a unique 564-mm-long stopper core with a CuCr1Zr absorber and an Inconel~718 diluter, taking into account radiological and infrastructure challenges. The installation process is also described, and the first operational feedback received since LS2 is presented.
设计、开发和建造欧洲核子研究中心(CERN)喷射器综合设施的新光束止动器
欧洲核子研究中心加速器综合体的传输线上安装有光束阻挡器;这些组件是出入安全系统的一部分,用于保障加速器内工作人员的安全。它们的设计目的是停止一次或最多几次光束脉冲,其中 "停止 "是指部分或全部吸收一次光束,使剩余未吸收的一次光束或二次光束保持在特定阈值以下,该阈值由辐射防护需求确定。在长期停运 2 号(LS2;2018--2021 年)之前,注入器综合设施中的束流挡板是为 9.0 至 30~kJ 的束脉冲能量而设计的。在大型强子对撞机喷射器升级(LIU)项目框架内,加速器综合体的升级涉及高达 92.5~kJ 的束脉冲能量,这意味着这些光束阻挡器必须满足新的功能规格。为了应对 LIU 的束流参数,并满足安全性、可维护性、效率和可靠性的要求,我们设计、制造并安装了新一代的 28 个光束阻断器。本文旨在展示这些新型横梁止动器的需求驱动设计,概述主要需求,并对设计和结构评估进行说明。考虑到辐射和基础设施方面的挑战,本文件介绍了标准化但可调整的设计的实施和集成情况,该设计采用了独特的 564 毫米长的阻挡器核心,带有一个 CuCr1Zr 吸收器和一个 Inconel~718 二极管。此外,还介绍了安装过程,以及自 LS2 以来收到的第一批运行反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信