Maocai Wang, Bin Li, Guangming Dai, Zhiming Song, Xiaoyu Chen, Qian Bao, Lei Peng
{"title":"A dynamic multi-objective optimization algorithm with a dual mechanism based on prediction and archive","authors":"Maocai Wang, Bin Li, Guangming Dai, Zhiming Song, Xiaoyu Chen, Qian Bao, Lei Peng","doi":"10.1016/j.swevo.2024.101693","DOIUrl":null,"url":null,"abstract":"<div><p>In the dynamic multi-objective optimization problems, if the environmental changes are detected, an appropriate response strategy be employed to respond quickly to the change. The predictive mechanism is effective in detecting the patterns of change in a problem and is often used to track the Pareto Frontier (PF) in a new environment. However, these methods often rely on the historical optimization results to approximate new environmental solutions, which can lead to back-predictions and mislead population convergence because of the low quality of historical solutions. This paper proposes a dual mechanism of prediction and archive (DMPA_DMOEA) to address the problem. The improvements include: (1) The well-distributed solutions from the previous environment be retained to ensure that reliable solutions exist in the new environment. (2) An LSTM neural network model is used to construct the predictor, which makes full use of the historical information and fits the nonlinear relationship between the pareto set (PS), thus improving the accuracy of the predicted solution. (3) These archived solutions and the predicted solutions collectively form the initial population for the new environment, which improves the quality of the initial population and maintains excellent tracking performance. Finally, Multiple benchmark problems and different variation types are tested to validate the effectiveness of the proposed algorithm. Experiment results show that the proposed algorithm can effectively handle DMOPs and has shown its remarkable superiority in comparison with state-of-the-art algorithms.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101693"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002311","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the dynamic multi-objective optimization problems, if the environmental changes are detected, an appropriate response strategy be employed to respond quickly to the change. The predictive mechanism is effective in detecting the patterns of change in a problem and is often used to track the Pareto Frontier (PF) in a new environment. However, these methods often rely on the historical optimization results to approximate new environmental solutions, which can lead to back-predictions and mislead population convergence because of the low quality of historical solutions. This paper proposes a dual mechanism of prediction and archive (DMPA_DMOEA) to address the problem. The improvements include: (1) The well-distributed solutions from the previous environment be retained to ensure that reliable solutions exist in the new environment. (2) An LSTM neural network model is used to construct the predictor, which makes full use of the historical information and fits the nonlinear relationship between the pareto set (PS), thus improving the accuracy of the predicted solution. (3) These archived solutions and the predicted solutions collectively form the initial population for the new environment, which improves the quality of the initial population and maintains excellent tracking performance. Finally, Multiple benchmark problems and different variation types are tested to validate the effectiveness of the proposed algorithm. Experiment results show that the proposed algorithm can effectively handle DMOPs and has shown its remarkable superiority in comparison with state-of-the-art algorithms.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.