{"title":"Capacitance Measurement for Evaluating the Initial Top-Electrode-Damage-Induced Degradation of Organic Devices","authors":"Chunqin Zhu, Guangrui Zhu, Ya Zhao, Ruichen Yi, Xiaoyuan Hou, Jiajun Qin","doi":"10.1021/acsmaterialslett.4c01103","DOIUrl":null,"url":null,"abstract":"The formation of bubbles and fractures on the top electrode surface is one of the key factors that leads to the degradation of organic devices. This degradation can be directly observed through optical microscopy but only in low spatial resolution of several micrometers due to limited optical contrast between the bubbles and their surroundings. Here, we present a nonintrusive capacitance method to characterize electrode damage with improved accuracy and testing efficiency. For serious degradation with a large damage area at the top electrode (almost more than 10 μm), the relative drop in capacitance after degradation is consistent with the results derived by optical microscopy. For initial degradation with a damage area below the resolution of optical microscopy (even less than 1 μm), our proposed capacitance method still works well, which is validated by atomic force microscopy results.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"131 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c01103","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of bubbles and fractures on the top electrode surface is one of the key factors that leads to the degradation of organic devices. This degradation can be directly observed through optical microscopy but only in low spatial resolution of several micrometers due to limited optical contrast between the bubbles and their surroundings. Here, we present a nonintrusive capacitance method to characterize electrode damage with improved accuracy and testing efficiency. For serious degradation with a large damage area at the top electrode (almost more than 10 μm), the relative drop in capacitance after degradation is consistent with the results derived by optical microscopy. For initial degradation with a damage area below the resolution of optical microscopy (even less than 1 μm), our proposed capacitance method still works well, which is validated by atomic force microscopy results.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.