{"title":"Particle Swarm Optimization for a redundant repairable machining system with working vacations and impatience in a multi-phase random environment","authors":"Amina Angelika Bouchentouf , Kamlesh Kumar , Parmeet Kaur Chahal","doi":"10.1016/j.swevo.2024.101688","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing reliance on cloud computing as the foundational manufacturing systems with intricate dynamics, featuring multiple service areas, varying job arrival rates, diverse service requirements, and the interplay of failures and impatience, significant analytical challenges arise. Queueing networks offer a powerful stochastic modeling framework to capture such complex dynamics. This paper develops a novel, exhaustive queueing model for a finite-capacity redundant multi-server system operating in a multi-phase random environment. The proposed model uniquely integrates real-world factors, including server breakdowns and repairs, waiting servers, synchronous working vacations, and state dependent balking and reneging, into a single queueing model, representing a significant advancement in the field. Using the matrix-analytic method, we establish the steady-state solution and derive key performance metrics. Numerical experiments and sensitivity analyses elucidate the impact of system parameters on performance measures. Additionally, a cost model is formulated, enabling cost optimization analysis using direct search method and Particle Swarm Optimization (PSO) to identify efficient operating configurations.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"90 ","pages":"Article 101688"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002268","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing reliance on cloud computing as the foundational manufacturing systems with intricate dynamics, featuring multiple service areas, varying job arrival rates, diverse service requirements, and the interplay of failures and impatience, significant analytical challenges arise. Queueing networks offer a powerful stochastic modeling framework to capture such complex dynamics. This paper develops a novel, exhaustive queueing model for a finite-capacity redundant multi-server system operating in a multi-phase random environment. The proposed model uniquely integrates real-world factors, including server breakdowns and repairs, waiting servers, synchronous working vacations, and state dependent balking and reneging, into a single queueing model, representing a significant advancement in the field. Using the matrix-analytic method, we establish the steady-state solution and derive key performance metrics. Numerical experiments and sensitivity analyses elucidate the impact of system parameters on performance measures. Additionally, a cost model is formulated, enabling cost optimization analysis using direct search method and Particle Swarm Optimization (PSO) to identify efficient operating configurations.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.