Effect of co-doping with Mg2+ and Ce3+ on the enhanced electrical and magnetic characteristics of cobalt nano ferrites

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
B. Suryanarayana, K. L. V. Nagasree, P. S. V. Shanmukhi, Jasgurpreet Singh Chohan, N. Murali, D. Parajuli, Tulu Wegayehu Mammo, Khalid Mujasam Batoo, Muhammad Farzik Ijaz, K. Samatha
{"title":"Effect of co-doping with Mg2+ and Ce3+ on the enhanced electrical and magnetic characteristics of cobalt nano ferrites","authors":"B. Suryanarayana,&nbsp;K. L. V. Nagasree,&nbsp;P. S. V. Shanmukhi,&nbsp;Jasgurpreet Singh Chohan,&nbsp;N. Murali,&nbsp;D. Parajuli,&nbsp;Tulu Wegayehu Mammo,&nbsp;Khalid Mujasam Batoo,&nbsp;Muhammad Farzik Ijaz,&nbsp;K. Samatha","doi":"10.1007/s10854-024-13304-x","DOIUrl":null,"url":null,"abstract":"<div><p>The sol–gel auto-combustion process synthesized materials with Mg<sup>2+</sup> and Ce<sup>3+</sup>-substituted CoFe<sub>2</sub>O<sub>4</sub> nano ferrites. The research focuses on the nanoparticles, specifically Co<sub>1−<i>x</i></sub>Mg<sub><i>x</i></sub>Fe<sub>2−<i>y</i></sub>Ce<sub><i>y</i></sub>O<sub>4</sub> (where <i>x</i> = 0.0, 0.25, 0.5, and 0.75; <i>y</i> = 0.0, 0.03, 0.06, and 0.09) (CMC) ferrite nanomaterials characterizations utilizing techniques such as XRD, FESEM with EDS, FTIR, electrical analysis, and VSM. The X-ray powder diffraction (XRD) patterns indicate the formation of a spinel structure, with no distinct peaks for rare earth ions, likely due to their minimal doping. Increasing the ionic sizes of RE<sup>3+</sup> ions decreases the lattice parameter of the resulting nanoferrites. Field emission scanning electron microscopy (FESEM) shows the samples are aggregated and nearly spherical. At the same time, energy-dispersive X-ray spectroscopy (EDS) confirms the presence of Co, Mg, Ce, Fe, and O. Fourier-transform infrared spectroscopy (FTIR) absorption bands predict the range of spinel ferrites, indicating that RE<sup>3+</sup> ions replace Fe<sup>3+</sup> ions in the B sites. DC electrical resistivity decreases with the concentration of substituted ions. Dielectric properties, including the dielectric constant, dielectric loss, and AC conductivity, were studied using LCR meters across various frequencies. AC conductivity increases with frequency while both the dielectric constant and loss decrease. These observations align with the Maxwell–Wagner polarization theory. The magnetic properties of CMC nanoparticles, such as squareness ratio (SQR = Mr/Ms), coercivity, saturation magnetization, remanence, and magnetic moment, were determined and analyzed using the vibrating sample magnetometer (VSM).</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13304-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The sol–gel auto-combustion process synthesized materials with Mg2+ and Ce3+-substituted CoFe2O4 nano ferrites. The research focuses on the nanoparticles, specifically Co1−xMgxFe2−yCeyO4 (where x = 0.0, 0.25, 0.5, and 0.75; y = 0.0, 0.03, 0.06, and 0.09) (CMC) ferrite nanomaterials characterizations utilizing techniques such as XRD, FESEM with EDS, FTIR, electrical analysis, and VSM. The X-ray powder diffraction (XRD) patterns indicate the formation of a spinel structure, with no distinct peaks for rare earth ions, likely due to their minimal doping. Increasing the ionic sizes of RE3+ ions decreases the lattice parameter of the resulting nanoferrites. Field emission scanning electron microscopy (FESEM) shows the samples are aggregated and nearly spherical. At the same time, energy-dispersive X-ray spectroscopy (EDS) confirms the presence of Co, Mg, Ce, Fe, and O. Fourier-transform infrared spectroscopy (FTIR) absorption bands predict the range of spinel ferrites, indicating that RE3+ ions replace Fe3+ ions in the B sites. DC electrical resistivity decreases with the concentration of substituted ions. Dielectric properties, including the dielectric constant, dielectric loss, and AC conductivity, were studied using LCR meters across various frequencies. AC conductivity increases with frequency while both the dielectric constant and loss decrease. These observations align with the Maxwell–Wagner polarization theory. The magnetic properties of CMC nanoparticles, such as squareness ratio (SQR = Mr/Ms), coercivity, saturation magnetization, remanence, and magnetic moment, were determined and analyzed using the vibrating sample magnetometer (VSM).

Abstract Image

共掺杂 Mg2+ 和 Ce3+ 对增强钴纳米铁氧体电学和磁学特性的影响
溶胶-凝胶自燃烧工艺合成了 Mg2+ 和 Ce3+ 取代 CoFe2O4 纳米铁氧体材料。研究重点是利用 XRD、带有 EDS 的 FESEM、傅立叶变换红外光谱、电学分析和 VSM 等技术分析纳米颗粒,特别是 Co1-xMgxFe2-yCeyO4 (其中 x = 0.0、0.25、0.5 和 0.75;y = 0.0、0.03、0.06 和 0.09)(CMC)铁氧体纳米材料的特性。X 射线粉末衍射 (XRD) 图显示形成了尖晶石结构,稀土离子没有明显的峰值,这可能是由于稀土离子掺杂极少。增加 RE3+ 离子的离子尺寸会降低纳米铁氧体的晶格参数。场发射扫描电子显微镜(FESEM)显示,样品呈聚集状,接近球形。同时,能量色散 X 射线光谱(EDS)证实了 Co、Mg、Ce、Fe 和 O 的存在。傅立叶变换红外光谱(FTIR)吸收带预测了尖晶铁氧体的范围,表明 RE3+ 离子取代了 B 位上的 Fe3+ 离子。直流电阻率随取代离子浓度的增加而降低。使用 LCR 表研究了介电性质,包括介电常数、介电损耗和不同频率的交流电导率。交流电导率随频率的增加而增加,而介电常数和介电损耗则随频率的降低而降低。这些观察结果与马克斯韦尔-瓦格纳极化理论相吻合。使用振动样品磁力计(VSM)测定和分析了 CMC 纳米粒子的磁特性,如方正比(SQR = Mr/Ms)、矫顽力、饱和磁化、剩磁和磁矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信