Adam Ostrowski, Karol Synoradzki, Damian Tomaszewski, Krzysztof Tadyszak
{"title":"Variable range hopping conductivity of hydrothermally reduced graphene oxide fibers","authors":"Adam Ostrowski, Karol Synoradzki, Damian Tomaszewski, Krzysztof Tadyszak","doi":"10.1007/s10854-024-13274-0","DOIUrl":null,"url":null,"abstract":"<div><p>We report applying the autoclaved hydrothermal method for obtaining conductive reduced graphene oxide (rGO) fibers for potential flexible electronic applications, such as supercapacitors, transistors, or sensing applications. The reduction of GO was performed in the temperature range 120 to 180 °C under increased pressure of ca. 8 bar in a sealed Teflon lined up, stainless steel autoclave. The fiber’s diameter and length were defined by the glass tube used as the mold for reducing GO water suspension (diameter of 600 µm and length of 8 cm). After drying, in an ambient atmosphere, the hydrogel fiber shrinks to ca. 50 µm in diameter and 6 cm in length (collapsed pore structure). The drying process, in addition to enhancing electrical conductivity, also increases the mechanical strength of the fibers due to the stronger overlapping of the graphene flakes. The best performance was observed in the fiber reduced at the highest temperature studied, 180 °C, and a minimum temperature of 120 °C is necessary to obtain a fiber. Electrical conductivity was measured using the 4-probe method. The results were analyzed within the framework of variable range hopping and Arrhenius models to pinpoint the best model describing electrical conductivity in dry rGO fibers.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10854-024-13274-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13274-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We report applying the autoclaved hydrothermal method for obtaining conductive reduced graphene oxide (rGO) fibers for potential flexible electronic applications, such as supercapacitors, transistors, or sensing applications. The reduction of GO was performed in the temperature range 120 to 180 °C under increased pressure of ca. 8 bar in a sealed Teflon lined up, stainless steel autoclave. The fiber’s diameter and length were defined by the glass tube used as the mold for reducing GO water suspension (diameter of 600 µm and length of 8 cm). After drying, in an ambient atmosphere, the hydrogel fiber shrinks to ca. 50 µm in diameter and 6 cm in length (collapsed pore structure). The drying process, in addition to enhancing electrical conductivity, also increases the mechanical strength of the fibers due to the stronger overlapping of the graphene flakes. The best performance was observed in the fiber reduced at the highest temperature studied, 180 °C, and a minimum temperature of 120 °C is necessary to obtain a fiber. Electrical conductivity was measured using the 4-probe method. The results were analyzed within the framework of variable range hopping and Arrhenius models to pinpoint the best model describing electrical conductivity in dry rGO fibers.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.