{"title":"A rotational velocity-correction projection method for the Micropolar Navier-Stokes equations","authors":"Zhiyong Si , Ziyi Li , Leilei Wei","doi":"10.1016/j.apnum.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a velocity correction projection method for the Micropolar Navier-Stokes Equations. The velocity correction method are adopted to approximate the time derivative term, stability analysis and error estimation of the first-order semi-discrete scheme are proved. At the same time, the optimal error estimate using the technique of dual norm are obtained. In this way, the divergence free of the velocity <strong>u</strong> can be conserved. Finally, the numerical results show the method has an optimal convergence order. The numerical results are consistent with our theoretical analysis, and our method is effective.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a velocity correction projection method for the Micropolar Navier-Stokes Equations. The velocity correction method are adopted to approximate the time derivative term, stability analysis and error estimation of the first-order semi-discrete scheme are proved. At the same time, the optimal error estimate using the technique of dual norm are obtained. In this way, the divergence free of the velocity u can be conserved. Finally, the numerical results show the method has an optimal convergence order. The numerical results are consistent with our theoretical analysis, and our method is effective.