Variation and λ-Jump Inequalities on Hp Spaces

IF 0.5 Q3 MATHEMATICS
S. Demir
{"title":"Variation and λ-Jump Inequalities on Hp Spaces","authors":"S. Demir","doi":"10.3103/s1066369x24700233","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Let <span>\\(\\phi \\in \\mathcal{S}\\)</span> with <span>\\(\\int \\phi (x){\\kern 1pt} dx = 1\\)</span>, and define <span>\\({{\\phi }_{t}}(x) = \\frac{1}{{{{t}^{n}}}}\\phi \\left( {\\frac{x}{t}} \\right),\\)</span>\nand denote the function family <span>\\({{\\{ {{\\phi }_{t}} * f(x)\\} }_{{t &gt; 0}}}\\)</span> by <span>\\(\\Phi * f(x)\\)</span>. Let <span>\\(\\mathcal{J}\\)</span> be a subset of <span>\\(\\mathbb{R}\\)</span> (or more generally an ordered index set), and suppose that there exists a constant <span>\\({{C}_{1}}\\)</span> such that <span>\\(\\sum\\limits_{t \\in \\mathcal{J}} {\\kern 1pt} {\\kern 1pt} {\\text{|}}{{\\hat {\\phi }}_{t}}(x){{{\\text{|}}}^{2}} &lt; {{C}_{1}}\\)</span>\nfor all <span>\\(x \\in {{\\mathbb{R}}^{n}}\\)</span>. Then</p><p> (i) There exists a constant <span>\\({{C}_{2}} &gt; 0\\)</span> such that <span>\\({\\text{||}}{{\\mathcal{V}}_{2}}(\\Phi * f){\\text{|}}{{{\\text{|}}}_{{{{L}^{p}}}}} \\leqslant {{C}_{2}}{\\text{||}}f{\\text{|}}{{{\\text{|}}}_{{{{H}^{p}}}}},\\quad \\frac{n}{{n + 1}} &lt; p \\leqslant 1\\)</span> for all <span>\\(f \\in {{H}^{p}}({{\\mathbb{R}}^{n}})\\)</span>, <span>\\(\\frac{n}{{n + 1}} &lt; p \\leqslant 1\\)</span>.</p><p> (ii) The λ-jump operator <span>\\({{N}_{\\lambda }}(\\Phi * f)\\)</span> satisfies\n<span>\\({\\text{||}}\\lambda {{[{{N}_{\\lambda }}(\\Phi * f)]}^{{1/2}}}{\\text{|}}{{{\\text{|}}}_{{{{L}^{p}}}}} \\leqslant {{C}_{3}}{\\text{||}}f{\\text{|}}{{{\\text{|}}}_{{{{H}^{p}}}}},\\quad \\frac{n}{{n + 1}} &lt; p \\leqslant 1,\\)</span> uniformly in <span>\\(\\lambda &gt; 0\\)</span> for some constant <span>\\({{C}_{3}} &gt; 0\\)</span>.</p>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"58 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x24700233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\phi \in \mathcal{S}\) with \(\int \phi (x){\kern 1pt} dx = 1\), and define \({{\phi }_{t}}(x) = \frac{1}{{{{t}^{n}}}}\phi \left( {\frac{x}{t}} \right),\) and denote the function family \({{\{ {{\phi }_{t}} * f(x)\} }_{{t > 0}}}\) by \(\Phi * f(x)\). Let \(\mathcal{J}\) be a subset of \(\mathbb{R}\) (or more generally an ordered index set), and suppose that there exists a constant \({{C}_{1}}\) such that \(\sum\limits_{t \in \mathcal{J}} {\kern 1pt} {\kern 1pt} {\text{|}}{{\hat {\phi }}_{t}}(x){{{\text{|}}}^{2}} < {{C}_{1}}\) for all \(x \in {{\mathbb{R}}^{n}}\). Then

 (i) There exists a constant \({{C}_{2}} > 0\) such that \({\text{||}}{{\mathcal{V}}_{2}}(\Phi * f){\text{|}}{{{\text{|}}}_{{{{L}^{p}}}}} \leqslant {{C}_{2}}{\text{||}}f{\text{|}}{{{\text{|}}}_{{{{H}^{p}}}}},\quad \frac{n}{{n + 1}} < p \leqslant 1\) for all \(f \in {{H}^{p}}({{\mathbb{R}}^{n}})\), \(\frac{n}{{n + 1}} < p \leqslant 1\).

 (ii) The λ-jump operator \({{N}_{\lambda }}(\Phi * f)\) satisfies \({\text{||}}\lambda {{[{{N}_{\lambda }}(\Phi * f)]}^{{1/2}}}{\text{|}}{{{\text{|}}}_{{{{L}^{p}}}}} \leqslant {{C}_{3}}{\text{||}}f{\text{|}}{{{\text{|}}}_{{{{H}^{p}}}}},\quad \frac{n}{{n + 1}} < p \leqslant 1,\) uniformly in \(\lambda > 0\) for some constant \({{C}_{3}} > 0\).

Hp 空间上的变分与λ-跳跃不等式
AbstractLet \(\phi \in \mathcal{S}\) with \(\int \phi (x){\kern 1pt} dx = 1\)、并定义 \({{\phi }_{t}}(x) = \frac{1}{{{{t}^{n}}}}\phi \left( {\frac{x}{t}} \right),\)and denote the function family\({{\ {{\phi }_{t}})* f(x)\}}_{{t > 0}}}) by \(\Phi * f(x)\).让 \(\mathcal{J}\) 是 \(\mathbb{R}}\) 的一个子集(或者更笼统地说,是一个有序索引集),并假设存在一个常数 \({{C}_{1}}\) 使得 \(\sum\limits_{t \in \mathcal{J}}){text{|}}{hat {\phi }}_{t}}(x){{{text{|}}}^{2}} < {{C}_{1}}}\)for all \(x \ in {{\mathbb{R}}^{n}}\).Then (i) There exists a constant \({{C}_{2}} > 0\) such that \({\text{||}}{\mathcal{V}}_{2}}(\Phi * f){\text{|}}{{\text{|}}_{{{{L}}^{p}}}}}\leqslant {{C}_{2}}{{text{||}}f{\text{|}}{{{\text{|}}}{{{{{{H}}^{p}}}}},\quad \frac{n}{{n + 1}} <;p leqslant 1\) for all \(f \in {{H}^{p}}({{\mathbb{R}}^{n}})\), \(\frac{n}{{n + 1}} < p leqslant 1\).(ii) λ-jump 算子 \({{N}_{\lambda }}(\Phi * f)\) satisfies\({\text{||}}\lambda {{[{{N}_{\lambda }}(\Phi * f)]}^{1/2}}}}{{text{|}}}{{{\text{|}}}_{{{{L}^{p}}}}}\leqslant {{C}_{3}}{text{||}}f{text{|}}{{{\text{|}}}{_{{{{H}}^{p}}}}},\quad \frac{n}{{n + 1}} < p \leqslant 1,\)在某个常数 \({{C}_{3}} > 0\) 下均匀地在\(\lambda > 0\) 中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信