Accurate data‐driven surrogates of dynamical systems for forward propagation of uncertainty

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Saibal De, Reese E. Jones, Hemanth Kolla
{"title":"Accurate data‐driven surrogates of dynamical systems for forward propagation of uncertainty","authors":"Saibal De, Reese E. Jones, Hemanth Kolla","doi":"10.1002/nme.7576","DOIUrl":null,"url":null,"abstract":"Stochastic collocation (SC) is a well‐known non‐intrusive method of constructing surrogate models for uncertainty quantification. In dynamical systems, SC is especially suited for full‐field uncertainty propagation that characterizes the distributions of the high‐dimensional solution fields of a model with stochastic input parameters. However, due to the highly nonlinear nature of the parameter‐to‐solution map in even the simplest dynamical systems, the constructed SC surrogates are often inaccurate. This work presents an alternative approach, where we apply the SC approximation over the dynamics of the model, rather than the solution. By combining the data‐driven sparse identification of nonlinear dynamics framework with SC, we construct dynamics surrogates and integrate them through time to construct the surrogate solutions. We demonstrate that the SC‐over‐dynamics framework leads to smaller errors, both in terms of the approximated system trajectories as well as the model state distributions, when compared against full‐field SC applied to the solutions directly. We present numerical evidence of this improvement using three test problems: a chaotic ordinary differential equation, and two partial differential equations from solid mechanics.","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nme.7576","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic collocation (SC) is a well‐known non‐intrusive method of constructing surrogate models for uncertainty quantification. In dynamical systems, SC is especially suited for full‐field uncertainty propagation that characterizes the distributions of the high‐dimensional solution fields of a model with stochastic input parameters. However, due to the highly nonlinear nature of the parameter‐to‐solution map in even the simplest dynamical systems, the constructed SC surrogates are often inaccurate. This work presents an alternative approach, where we apply the SC approximation over the dynamics of the model, rather than the solution. By combining the data‐driven sparse identification of nonlinear dynamics framework with SC, we construct dynamics surrogates and integrate them through time to construct the surrogate solutions. We demonstrate that the SC‐over‐dynamics framework leads to smaller errors, both in terms of the approximated system trajectories as well as the model state distributions, when compared against full‐field SC applied to the solutions directly. We present numerical evidence of this improvement using three test problems: a chaotic ordinary differential equation, and two partial differential equations from solid mechanics.
用于不确定性前向传播的动力系统的精确数据驱动代用品
随机配准(SC)是一种著名的非侵入式方法,用于构建不确定性量化的代用模型。在动态系统中,SC 特别适用于全场不确定性传播,以描述具有随机输入参数的模型的高维解场分布。然而,即使在最简单的动力学系统中,由于参数到解映射的高度非线性性质,所构建的 SC 代理往往并不准确。本研究提出了另一种方法,即在模型动态而非解法上应用 SC 近似。通过将数据驱动的非线性动力学稀疏识别框架与 SC 相结合,我们构建了动力学代用体,并对其进行时间整合,从而构建代用解。我们证明,与直接应用于解法的全场 SC 相比,SC-over-dynamics 框架在近似系统轨迹和模型状态分布方面都能带来更小的误差。我们用三个测试问题展示了这种改进的数值证据:一个混沌常微分方程和两个固体力学偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信