Lightweight and broadband metamaterial absorber based on ITO impedance film

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Meng Xiangrui , Lv Mingyun , Sun Tianfang , Xu Ziyuan , Yu Chuan , Huang Minjie , Du Huafei , Pang Xiaoyu , Fu Yixiang
{"title":"Lightweight and broadband metamaterial absorber based on ITO impedance film","authors":"Meng Xiangrui ,&nbsp;Lv Mingyun ,&nbsp;Sun Tianfang ,&nbsp;Xu Ziyuan ,&nbsp;Yu Chuan ,&nbsp;Huang Minjie ,&nbsp;Du Huafei ,&nbsp;Pang Xiaoyu ,&nbsp;Fu Yixiang","doi":"10.1016/j.aeue.2024.155458","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a lightweight, broadband metamaterial absorber that exhibits polarization stability and is insensitive to incident angles. The absorber is composed of one layer of indium tin oxide impedance surface, three layers of quartz fiber composite material, and one layer of paper honeycomb on a metal sheet. Our proposed absorber has a 90 % absorptivity bandwidth of 13.19 GHz, ranging from 4.83 GHz to 18.12 GHz at TEM plane wave normal incidence, covering the entire X and Ku band. We illustrate the variation of design parameters and the distribution of electromagnetic field and current to investigate the absorption mechanism. To demonstrate the effectiveness of our design, we fabricate a prototype sample and measure its absorption performance. The results show a bandwidth of 12.38 GHz, ranging from 4.91 GHz to 17.29 GHz, with a low profile of 0.095λL at the lowest operating frequency. The experimental results are in good agreement with the numerical simulation, effectively verifying our proposed design.</p></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"185 ","pages":"Article 155458"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124003443","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a lightweight, broadband metamaterial absorber that exhibits polarization stability and is insensitive to incident angles. The absorber is composed of one layer of indium tin oxide impedance surface, three layers of quartz fiber composite material, and one layer of paper honeycomb on a metal sheet. Our proposed absorber has a 90 % absorptivity bandwidth of 13.19 GHz, ranging from 4.83 GHz to 18.12 GHz at TEM plane wave normal incidence, covering the entire X and Ku band. We illustrate the variation of design parameters and the distribution of electromagnetic field and current to investigate the absorption mechanism. To demonstrate the effectiveness of our design, we fabricate a prototype sample and measure its absorption performance. The results show a bandwidth of 12.38 GHz, ranging from 4.91 GHz to 17.29 GHz, with a low profile of 0.095λL at the lowest operating frequency. The experimental results are in good agreement with the numerical simulation, effectively verifying our proposed design.

基于 ITO 阻抗膜的轻质宽带超材料吸收器
本文介绍了一种轻质宽带超材料吸收器,它具有极化稳定性,对入射角度不敏感。该吸收器由一层氧化铟锡阻抗面、三层石英纤维复合材料和一层金属板上的纸蜂窝组成。我们提出的吸收器具有 13.19 GHz 的 90 % 吸收带宽,在 TEM 平面波法线入射时,吸收带宽从 4.83 GHz 到 18.12 GHz 不等,覆盖了整个 X 和 Ku 波段。我们说明了设计参数的变化以及电磁场和电流的分布,以研究吸收机制。为了证明设计的有效性,我们制作了一个原型样品,并测量了其吸收性能。结果表明,该器件的带宽为 12.38 GHz,范围从 4.91 GHz 到 17.29 GHz,在最低工作频率时的轮廓较小,仅为 0.095λL。实验结果与数值模拟结果十分吻合,有效验证了我们提出的设计方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
18.80%
发文量
292
审稿时长
4.9 months
期刊介绍: AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including: signal and system theory, digital signal processing network theory and circuit design information theory, communication theory and techniques, modulation, source and channel coding switching theory and techniques, communication protocols optical communications microwave theory and techniques, radar, sonar antennas, wave propagation AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信