Yuta Fukuda, Khunanya Janchai, Takenobu Sunagawa, Masayuki Yamaguchi
{"title":"Anomalous Mechanical Response of Stretched Film of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate)","authors":"Yuta Fukuda, Khunanya Janchai, Takenobu Sunagawa, Masayuki Yamaguchi","doi":"10.1007/s10924-024-03370-x","DOIUrl":null,"url":null,"abstract":"<p>The mechanical responses during loading, unloading, and reloading cyclic tensile tests of a tubular blown film of poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyhexanoate) are studied. Although the stress–strain curve recorded during the initial stretching process is typical for a crystalline polymer, the stretched film behaves like a rubber during the reloading process; that is, low modulus with a small residual strain after unloading. Furthermore, the stress–strain curves during the reloading process are an inverted “S” shape. During the first stretching process of the polymer film, small crystals are destroyed without reorganization into a crystalline structure, leading to the observed decrease of crystallinity. In contrast, well-developed crystals that orient to the machine direction of the film do not disappear during the first stretching and act as crosslink points during reloading. As a result, a rubber-like response is detected. This mechanical response during reloading is considerably different from those of conventional crystalline plastics such as polyethylene and polypropylene.</p>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10924-024-03370-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical responses during loading, unloading, and reloading cyclic tensile tests of a tubular blown film of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) are studied. Although the stress–strain curve recorded during the initial stretching process is typical for a crystalline polymer, the stretched film behaves like a rubber during the reloading process; that is, low modulus with a small residual strain after unloading. Furthermore, the stress–strain curves during the reloading process are an inverted “S” shape. During the first stretching process of the polymer film, small crystals are destroyed without reorganization into a crystalline structure, leading to the observed decrease of crystallinity. In contrast, well-developed crystals that orient to the machine direction of the film do not disappear during the first stretching and act as crosslink points during reloading. As a result, a rubber-like response is detected. This mechanical response during reloading is considerably different from those of conventional crystalline plastics such as polyethylene and polypropylene.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.