{"title":"High Refractive Index Sensor for Tellurite Photonic Crystal Fiber Based on Soliton Self-Frequency Shift","authors":"Di Wu;Jing Zhang","doi":"10.1109/JPHOT.2024.3439886","DOIUrl":null,"url":null,"abstract":"In this paper, a novel refractive index (RI) sensor based on the soliton self-frequency shift (SSFS) in tellurite photonic crystal fiber (TPCF) is proposed. RI sensing in the mid-infrared region is achieved by detecting the wavelength shift of the soliton. By exploiting the high RI property of the tellurite fiber, it is possible to measure surrogate liquids with higher RIs compared to conventional silica fibers. The sensitivity of the proposed sensor can reach up to 3657.5 nm/RIU when a fiber laser with a pulse width of 100 fs and pump wavelength (\n<italic>λ<sub>P</sub></i>\n) of 2600 nm is used as the light source and a 1 m-long TPCF is utilized as the nonlinear medium. To the best of our knowledge, this is the first time that high RI sensing in the mid infrared region has been achieved by exploiting the SSFS effect in non-silica fibers such as TPCF.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 5","pages":"1-6"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10629046","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10629046/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel refractive index (RI) sensor based on the soliton self-frequency shift (SSFS) in tellurite photonic crystal fiber (TPCF) is proposed. RI sensing in the mid-infrared region is achieved by detecting the wavelength shift of the soliton. By exploiting the high RI property of the tellurite fiber, it is possible to measure surrogate liquids with higher RIs compared to conventional silica fibers. The sensitivity of the proposed sensor can reach up to 3657.5 nm/RIU when a fiber laser with a pulse width of 100 fs and pump wavelength (
λP
) of 2600 nm is used as the light source and a 1 m-long TPCF is utilized as the nonlinear medium. To the best of our knowledge, this is the first time that high RI sensing in the mid infrared region has been achieved by exploiting the SSFS effect in non-silica fibers such as TPCF.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.