P. Hirling , M. Bianco , S.K. Giri , I.T. Iliev , G. Mellema , J.-P. Kneib
{"title":"pyC 2 Ray: A flexible and GPU-accelerated radiative transfer framework for simulating the cosmic epoch of reionization","authors":"P. Hirling , M. Bianco , S.K. Giri , I.T. Iliev , G. Mellema , J.-P. Kneib","doi":"10.1016/j.ascom.2024.100861","DOIUrl":null,"url":null,"abstract":"<div><p>Detailed modeling of the evolution of neutral hydrogen in the intergalactic medium during the Epoch of Reionization, <span><math><mrow><mn>5</mn><mo>≤</mo><mi>z</mi><mo>≤</mo><mn>20</mn></mrow></math></span>, is critical in interpreting the cosmological signals from current and upcoming 21-cm experiments such as the Low-Frequency Array (LOFAR) and the Square Kilometre Array (SKA). Numerical radiative transfer codes provide the most physically accurate models of the reionization process. However, they are computationally expensive as they must encompass enormous cosmological volumes while accurately capturing astrophysical processes occurring at small scales (<span><math><mrow><mo>≲</mo><mi>Mpc</mi></mrow></math></span>). Here, we present <span>pyC</span> <span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span>Ray</span>, an updated version of the massively parallel ray-tracing and chemistry code, <span>C</span> <span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span>-Ray</span>, which has been extensively employed in reionization simulations. The most time-consuming part of the code is calculating the hydrogen column density along the path of the ionizing photons. Here, we present the Accelerated Short-characteristics Octahedral ray-tracing (<span>ASORA</span>) method, a ray-tracing algorithm specifically designed to run on graphical processing units (GPUs). We include a modern <span>Python</span> interface, allowing easy and customized use of the code without compromising computational efficiency. We test <span>pyC</span> <span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span>Ray</span> on a series of standard ray-tracing tests and a complete cosmological simulation with volume size <span><math><msup><mrow><mrow><mo>(</mo><mn>349</mn><mspace></mspace><mi>Mpc</mi><mo>)</mo></mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>, mesh size of <span><math><mrow><mn>25</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> and approximately <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span> sources. Compared to the original code, <span>pyC</span> <span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> <span>Ray</span> achieves the same results with negligible fractional differences, <span><math><mrow><mo>∼</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow></msup></mrow></math></span>, and a speedup factor of two orders of magnitude. Benchmark analysis shows that <span>ASORA</span> takes a few nanoseconds per source per voxel and scales linearly for an increasing number of sources and voxels within the ray-tracing radii.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000763","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Detailed modeling of the evolution of neutral hydrogen in the intergalactic medium during the Epoch of Reionization, , is critical in interpreting the cosmological signals from current and upcoming 21-cm experiments such as the Low-Frequency Array (LOFAR) and the Square Kilometre Array (SKA). Numerical radiative transfer codes provide the most physically accurate models of the reionization process. However, they are computationally expensive as they must encompass enormous cosmological volumes while accurately capturing astrophysical processes occurring at small scales (). Here, we present pyCRay, an updated version of the massively parallel ray-tracing and chemistry code, C-Ray, which has been extensively employed in reionization simulations. The most time-consuming part of the code is calculating the hydrogen column density along the path of the ionizing photons. Here, we present the Accelerated Short-characteristics Octahedral ray-tracing (ASORA) method, a ray-tracing algorithm specifically designed to run on graphical processing units (GPUs). We include a modern Python interface, allowing easy and customized use of the code without compromising computational efficiency. We test pyCRay on a series of standard ray-tracing tests and a complete cosmological simulation with volume size , mesh size of and approximately sources. Compared to the original code, pyCRay achieves the same results with negligible fractional differences, , and a speedup factor of two orders of magnitude. Benchmark analysis shows that ASORA takes a few nanoseconds per source per voxel and scales linearly for an increasing number of sources and voxels within the ray-tracing radii.
对再电离纪元(Epoch of Reionization)期间星系际介质中的中性氢的演化进行详细建模,对于解释当前和即将进行的 21 厘米实验(如低频阵列(LOFAR)和平方公里阵列(SKA))发出的宇宙学信号至关重要。数值辐射传递代码提供了物理上最精确的再电离过程模型。然而,由于它们必须涵盖巨大的宇宙学体积,同时又要准确捕捉发生在小尺度上的天体物理过程,因此计算成本非常昂贵()。在此,我们介绍了大规模并行光线追踪和化学代码"Ⅳ"的更新版本,该代码已被广泛用于再电离模拟。该代码最耗时的部分是计算电离光子路径上的氢柱密度。在这里,我们介绍加速短特征八面体射线追踪()方法,这是一种专门设计用于在图形处理器(GPU)上运行的射线追踪算法。我们提供了一个现代化的界面,允许在不影响计算效率的情况下轻松定制使用代码。我们在一系列标准光线追踪测试和一个完整的宇宙学模拟中进行了测试,模拟的体积大小、网格大小和来源大致相同。与最初的代码相比,我们的计算速度提高了两个数量级。基准分析表明,每个源、每个体素只需几纳秒,并且随着光线追踪半径内源和体素数量的增加而线性扩展。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.