Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer

Siqiao Zhao, Zhikang Dong, Zeyu Cao, Raphael Douady
{"title":"Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer","authors":"Siqiao Zhao, Zhikang Dong, Zeyu Cao, Raphael Douady","doi":"arxiv-2408.03320","DOIUrl":null,"url":null,"abstract":"When constructing portfolios, a key problem is that a lot of financial time\nseries data are sparse, making it challenging to apply machine learning\nmethods. Polymodel theory can solve this issue and demonstrate superiority in\nportfolio construction from various aspects. To implement the PolyModel theory\nfor constructing a hedge fund portfolio, we begin by identifying an asset pool,\nutilizing over 10,000 hedge funds for the past 29 years' data. PolyModel theory\nalso involves choosing a wide-ranging set of risk factors, which includes\nvarious financial indices, currencies, and commodity prices. This comprehensive\nselection mirrors the complexities of the real-world environment. Leveraging on\nthe PolyModel theory, we create quantitative measures such as Long-term Alpha,\nLong-term Ratio, and SVaR. We also use more classical measures like the Sharpe\nratio or Morningstar's MRAR. To enhance the performance of the constructed\nportfolio, we also employ the latest deep learning techniques (iTransformer) to\ncapture the upward trend, while efficiently controlling the downside, using all\nthe features. The iTransformer model is specifically designed to address the\nchallenges in high-dimensional time series forecasting and could largely\nimprove our strategies. More precisely, our strategies achieve better Sharpe\nratio and annualized return. The above process enables us to create multiple\nportfolio strategies aiming for high returns and low risks when compared to\nvarious benchmarks.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When constructing portfolios, a key problem is that a lot of financial time series data are sparse, making it challenging to apply machine learning methods. Polymodel theory can solve this issue and demonstrate superiority in portfolio construction from various aspects. To implement the PolyModel theory for constructing a hedge fund portfolio, we begin by identifying an asset pool, utilizing over 10,000 hedge funds for the past 29 years' data. PolyModel theory also involves choosing a wide-ranging set of risk factors, which includes various financial indices, currencies, and commodity prices. This comprehensive selection mirrors the complexities of the real-world environment. Leveraging on the PolyModel theory, we create quantitative measures such as Long-term Alpha, Long-term Ratio, and SVaR. We also use more classical measures like the Sharpe ratio or Morningstar's MRAR. To enhance the performance of the constructed portfolio, we also employ the latest deep learning techniques (iTransformer) to capture the upward trend, while efficiently controlling the downside, using all the features. The iTransformer model is specifically designed to address the challenges in high-dimensional time series forecasting and could largely improve our strategies. More precisely, our strategies achieve better Sharpe ratio and annualized return. The above process enables us to create multiple portfolio strategies aiming for high returns and low risks when compared to various benchmarks.
利用 PolyModel 理论和 iTransformer 构建对冲基金投资组合
在构建投资组合时,一个关键问题是很多金融时间序列数据都很稀疏,这给应用机器学习方法带来了挑战。多模型理论可以解决这一问题,并从多方面体现出构建投资组合的优越性。为了利用多模型理论构建对冲基金投资组合,我们首先利用过去 29 年的 10,000 多只对冲基金的数据确定了一个资产池。PolyModel 理论还涉及选择一系列广泛的风险因素,包括各种金融指数、货币和商品价格。这种全面的选择反映了现实世界环境的复杂性。利用多模型理论,我们创建了长期阿尔法、长期比率和 SVaR 等量化指标。我们还使用了更经典的指标,如夏普比率(Sharperatio)或晨星的 MRAR。为了提高所构建投资组合的表现,我们还采用了最新的深度学习技术(iTransformer),以利用所有特征捕捉上涨趋势,同时有效控制下跌趋势。iTransformer 模型专为解决高维时间序列预测中的挑战而设计,可以在很大程度上改进我们的策略。更确切地说,我们的策略可以获得更好的夏普比率和年化收益率。与各种基准相比,上述过程使我们能够创建以高收益和低风险为目标的多重投资组合策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信