Constraining cosmological parameters with viscous modified chaplygin gas and generalized cosmic chaplygin gas models in Horava–Lifshitz gravity: Utilizing late-time datasets

IF 4.2 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Sayani Maity , Himanshu Chaudhary , Ujjal Debnath , S.K. Maurya , G. Mustafa
{"title":"Constraining cosmological parameters with viscous modified chaplygin gas and generalized cosmic chaplygin gas models in Horava–Lifshitz gravity: Utilizing late-time datasets","authors":"Sayani Maity ,&nbsp;Himanshu Chaudhary ,&nbsp;Ujjal Debnath ,&nbsp;S.K. Maurya ,&nbsp;G. Mustafa","doi":"10.1016/j.astropartphys.2024.103026","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates accelerated cosmic expansion using the Viscous Modified Chaplygin Gas (VMMG) and Generalized Cosmic Chaplygin Gas (GCCM) within Horava–Lifshitz gravity. Our primary objective is to constrain essential cosmological parameters, such as the Hubble Parameter (<span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) and Sound Horizon (<span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>). We incorporate recent datasets comprising 17 Baryon Acoustic Oscillation observations, 33 Cosmic Chronometer measurements, 40 Type Ia Supernovae data points, 24 quasar Hubble diagram data points, and 162 Gamma Ray Bursts data points. Additionally, we integrate the most recent determination of the Hubble constant (R22). We treat <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> as a free parameter, which offers several advantages, including mitigating bias, enhancing precision, and improving compatibility with various datasets. Consequently, by introducing random correlations in the covariance matrix during simulation, errors are effectively reduced. Our estimated values of the Hubble constant (<span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>) and <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> consistently align with measurements from both the Planck and SDSS experiments. Additionally, cosmographic tests offer valuable insights into the dynamics of various cosmological models, enriching our understanding of cosmic evolution. Statefinder diagnostics provide deeper insights into cosmic expansion dynamics, aiding in distinguishing between both cosmological frameworks. Furthermore, the <span><math><msub><mrow><mi>o</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> diagnostic test reveals that at late times, the VMMG model falls into the phantom region, while the Generalized GCCM falls into the quintessence region. Finally, the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) provide support for all models under consideration, indicating that each model offers a plausible explanation. Notably, the <span><math><mi>Λ</mi></math></span>CDM model emerges with the lowest AIC score, suggesting its relatively superior fit compared to others. Additionally, validation through the reduced <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mtext>red</mtext></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> statistic confirms satisfactory fits across all models, further reinforcing their credibility in explaining the observed data.</p></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"164 ","pages":"Article 103026"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927650524001038/pdfft?md5=92e1d74b1f3b180d7074a5a2c0483df1&pid=1-s2.0-S0927650524001038-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650524001038","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates accelerated cosmic expansion using the Viscous Modified Chaplygin Gas (VMMG) and Generalized Cosmic Chaplygin Gas (GCCM) within Horava–Lifshitz gravity. Our primary objective is to constrain essential cosmological parameters, such as the Hubble Parameter (H0) and Sound Horizon (rd). We incorporate recent datasets comprising 17 Baryon Acoustic Oscillation observations, 33 Cosmic Chronometer measurements, 40 Type Ia Supernovae data points, 24 quasar Hubble diagram data points, and 162 Gamma Ray Bursts data points. Additionally, we integrate the most recent determination of the Hubble constant (R22). We treat rd as a free parameter, which offers several advantages, including mitigating bias, enhancing precision, and improving compatibility with various datasets. Consequently, by introducing random correlations in the covariance matrix during simulation, errors are effectively reduced. Our estimated values of the Hubble constant (H0) and rd consistently align with measurements from both the Planck and SDSS experiments. Additionally, cosmographic tests offer valuable insights into the dynamics of various cosmological models, enriching our understanding of cosmic evolution. Statefinder diagnostics provide deeper insights into cosmic expansion dynamics, aiding in distinguishing between both cosmological frameworks. Furthermore, the om diagnostic test reveals that at late times, the VMMG model falls into the phantom region, while the Generalized GCCM falls into the quintessence region. Finally, the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) provide support for all models under consideration, indicating that each model offers a plausible explanation. Notably, the ΛCDM model emerges with the lowest AIC score, suggesting its relatively superior fit compared to others. Additionally, validation through the reduced χred2 statistic confirms satisfactory fits across all models, further reinforcing their credibility in explaining the observed data.

用霍拉瓦-利夫希茨引力中的粘性修正查普利金气体和广义宇宙查普利金气体模型来约束宇宙学参数:利用晚期数据集
这项研究利用霍拉瓦-利夫希茨引力中的粘性修正查普利金气体(VMMG)和广义宇宙查普利金气体(GCCM)研究了加速宇宙膨胀。我们的主要目标是约束基本宇宙学参数,如哈勃参数()和声地平线()。我们整合了最近的数据集,包括 17 个重子声振荡观测数据、33 个宇宙天文台测量数据、40 个 Ia 型超新星数据点、24 个类星体哈勃图数据点和 162 个伽马射线暴数据点。此外,我们还整合了最新测定的哈勃常数(R22)。我们将哈勃常数作为一个自由参数处理,这样做有几个好处,包括减少偏差、提高精确度和改善与各种数据集的兼容性。因此,通过在模拟过程中在协方差矩阵中引入随机相关性,可以有效减少误差。我们估计的哈勃常数()值与普朗克和 SDSS 实验的测量值一致。此外,宇宙学测试为我们了解各种宇宙学模型的动态提供了宝贵的信息,丰富了我们对宇宙演化的理解。状态探测器诊断对宇宙膨胀动力学有更深入的了解,有助于区分两种宇宙学框架。此外,诊断测试表明,在晚期,VMMG 模型陷入了幻影区域,而广义 GCCM 则陷入了精华区域。最后,阿凯克信息准则(AIC)和贝叶斯信息准则(BIC)为所有模型提供了支持,表明每个模型都提供了合理的解释。值得注意的是,CDM 模型的 AIC 得分最低,表明其拟合优于其他模型。此外,通过还原统计量验证,所有模型的拟合效果都令人满意,进一步增强了模型在解释观测数据方面的可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astroparticle Physics
Astroparticle Physics 地学天文-天文与天体物理
CiteScore
8.00
自引率
2.90%
发文量
41
审稿时长
79 days
期刊介绍: Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信