{"title":"Towards an optimal 3-D design and deployment of 6G UAVs for interference mitigation under terrestrial networks","authors":"","doi":"10.1016/j.adhoc.2024.103612","DOIUrl":null,"url":null,"abstract":"<div><p>Unmanned aerial vehicles (UAVs) have opened new communication possibilities by being able to access remote areas. Their ability to serve a large number of users based on demand and adaptability is a key strength. In Sixth Generation (6G) networks, UAVs are highly valued for their cost-efficiency and versatile deployment. However, the mobility of UAVs introduces different types of interference issues, resulting in a decrease in network performance and quality of service (QoS) for edge users. To address these challenges, this paper introduces a clustering-based solution involving three main steps. Firstly, UAVs are deployed in three-dimension (3D) space based on user requests using mini-batch K-mean clustering Subsequently, re-clustering is explored to tackle load balancing within clusters. Finally, outliers and boundary users are classified to enhance QoS for edge users. This model effectively reduces interference and boosts UAV reliability in terrestrial networks. Also, a case study is presented to show how UAVs can mitigate interference in maritime communication within terrestrial networks. Numerical results demonstrated that the proposed scheme increases throughput by 33.06% and reduces energy consumption and time delay by 73.15% and 9.15%, respectively, as compared to the existing baseline schemes.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002233","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned aerial vehicles (UAVs) have opened new communication possibilities by being able to access remote areas. Their ability to serve a large number of users based on demand and adaptability is a key strength. In Sixth Generation (6G) networks, UAVs are highly valued for their cost-efficiency and versatile deployment. However, the mobility of UAVs introduces different types of interference issues, resulting in a decrease in network performance and quality of service (QoS) for edge users. To address these challenges, this paper introduces a clustering-based solution involving three main steps. Firstly, UAVs are deployed in three-dimension (3D) space based on user requests using mini-batch K-mean clustering Subsequently, re-clustering is explored to tackle load balancing within clusters. Finally, outliers and boundary users are classified to enhance QoS for edge users. This model effectively reduces interference and boosts UAV reliability in terrestrial networks. Also, a case study is presented to show how UAVs can mitigate interference in maritime communication within terrestrial networks. Numerical results demonstrated that the proposed scheme increases throughput by 33.06% and reduces energy consumption and time delay by 73.15% and 9.15%, respectively, as compared to the existing baseline schemes.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.