Keqi Chen , Zengmou Li , Keyu Zhang , Dingfang Cui , Rui Yan , Minghao Ye , Bin Yang , Yaochun Yao
{"title":"Improving rate performance of FeC2O4/rGO composites on lithium storage via single-polymerization‐induced electrostatic self‐assembly","authors":"Keqi Chen , Zengmou Li , Keyu Zhang , Dingfang Cui , Rui Yan , Minghao Ye , Bin Yang , Yaochun Yao","doi":"10.1016/j.elecom.2024.107791","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the wide interlayer distance for ions diffusion, iron (II) oxalate exhibits excellent lithium storage ability. However, the local deposition of metallic nanoparticles of Fe<sup>0</sup> leads to low electrochemical reactivity, which hinders the actual application of FeC<sub>2</sub>O<sub>4</sub> in large current regions (>5C). To solve this problem, a strong cationic polymeric electrolyte, polyelectrolyte diallyl dimethyl ammonium (PDDA), was introduced to construct a [FeC<sub>2</sub>O<sub>4</sub>(PDDA)]<sup>+</sup> ligand. By single-polymerization‐induced electrostatic self-assembly, the [FeC<sub>2</sub>O<sub>4</sub>(PDDA)]<sup>+</sup> ligand was combined with the surface-charged rGO to produce a FeC<sub>2</sub>O<sub>4</sub>/rGO material. It is proved that the rGO carrier improves the interparticle conductivity, electrochemical activity and structure stability of the iron (II) oxalate particles, ensuring the stability of Li || FeC<sub>2</sub>O<sub>4</sub>/rGO battery at a rapid charging rate of 20C (8 A g<sup>−1</sup>) for more than 500 cycles (with the special capacity of 713 mAh g<sup>−1</sup>). Compared with FeC<sub>2</sub>O<sub>4</sub> electrode, owning to high reactivity of rGO and continuously activating on the nanoscale Fe metal generated at ∼0.75 V, FeC<sub>2</sub>O<sub>4</sub>/rGO shows higher electrochemical activity of conversion reaction in the first 50 cycles and better reversibility in the rate charge–discharge test (the capacity rapidly increased to 1158.8 mAh g<sup>−1</sup> after 20C cycles). This work reveals how the structural design of conducting and supporting the carrier can achieve fast charging for iron (II) oxalate lithium-ion batteries.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107791"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001346/pdfft?md5=927af48ce748b51866f302ce763ebc80&pid=1-s2.0-S1388248124001346-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001346","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the wide interlayer distance for ions diffusion, iron (II) oxalate exhibits excellent lithium storage ability. However, the local deposition of metallic nanoparticles of Fe0 leads to low electrochemical reactivity, which hinders the actual application of FeC2O4 in large current regions (>5C). To solve this problem, a strong cationic polymeric electrolyte, polyelectrolyte diallyl dimethyl ammonium (PDDA), was introduced to construct a [FeC2O4(PDDA)]+ ligand. By single-polymerization‐induced electrostatic self-assembly, the [FeC2O4(PDDA)]+ ligand was combined with the surface-charged rGO to produce a FeC2O4/rGO material. It is proved that the rGO carrier improves the interparticle conductivity, electrochemical activity and structure stability of the iron (II) oxalate particles, ensuring the stability of Li || FeC2O4/rGO battery at a rapid charging rate of 20C (8 A g−1) for more than 500 cycles (with the special capacity of 713 mAh g−1). Compared with FeC2O4 electrode, owning to high reactivity of rGO and continuously activating on the nanoscale Fe metal generated at ∼0.75 V, FeC2O4/rGO shows higher electrochemical activity of conversion reaction in the first 50 cycles and better reversibility in the rate charge–discharge test (the capacity rapidly increased to 1158.8 mAh g−1 after 20C cycles). This work reveals how the structural design of conducting and supporting the carrier can achieve fast charging for iron (II) oxalate lithium-ion batteries.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.